Один з катетів прямокутного трикутника дорівнює 6 см, а другий – на 2 см коротший за гіпотенузу. Точка, що не лежить у площині трикутника, віддалена від кожної з його вершин на 13 см. Знайдіть відстань від даної точки до площини трикутника.
Обозначим коэффициент пропорциональности через k, тогда диагонали ромба 3k и 4k. С одной стороны площадь ромба равна половине произведения диагоналей, то есть: Sabcd = 1/2 d₁ * d₂ = 1/2 *3k *4k = 6k² C другой стороны площадь ромба равна произведению стороны на высоту, то есть: B Sabcd = AH * BC OC = 1,5k BO = 2k H Из ΔBOC по теореме Пифагора BC² = (1,5k)² + (2k)² = 6,25k² A O C BC = 2,5k Sabcd = 3,6 * 2,5k = 9k Следовательно D 6k² = 9k 2k = 3 k = 1,5 Значит BC = 2,5 * 1,5 = 3,75 Pabcd = 4 * 3,75 = 15
Угол между радиусами вписанной окружности правильного многоугольника, проведёнными в точки касание этой окружности с соседними сторонами многоугольника, равен 20 градусов. Найдите количество сторон многоугольника.
------
Полная окружность 360°, угол между соседними радиусами, проведенными в точки касания соседних сторон, 20°. Всего таких углов 360°:20°=18
Подробно.
Радиус, проведенный в точку касания окружности с прямой, перпендикулярен ей.
Два радиуса, проведенные из центра в точки касания А и С соседних сторон правильного многоугольника, образуют с ними четырехугольник АОСВ, два угла которого прямые, а третий, ∠АОС= 20°.
Суммы углов выпуклого многоугольника 180°•(n-2), где n- количество сторон (и углов) многоугольника. Для четырехугольника сумма углов равна 360°.
Sabcd = 1/2 d₁ * d₂ = 1/2 *3k *4k = 6k²
C другой стороны площадь ромба равна произведению стороны на высоту, то есть:
B Sabcd = AH * BC
OC = 1,5k BO = 2k
H Из ΔBOC по теореме Пифагора
BC² = (1,5k)² + (2k)² = 6,25k²
A O C BC = 2,5k
Sabcd = 3,6 * 2,5k = 9k
Следовательно
D 6k² = 9k
2k = 3
k = 1,5
Значит BC = 2,5 * 1,5 = 3,75
Pabcd = 4 * 3,75 = 15
Угол между радиусами вписанной окружности правильного многоугольника, проведёнными в точки касание этой окружности с соседними сторонами многоугольника, равен 20 градусов. Найдите количество сторон многоугольника.
------
Полная окружность 360°, угол между соседними радиусами, проведенными в точки касания соседних сторон, 20°. Всего таких углов 360°:20°=18
Подробно.
Радиус, проведенный в точку касания окружности с прямой, перпендикулярен ей.
Два радиуса, проведенные из центра в точки касания А и С соседних сторон правильного многоугольника, образуют с ними четырехугольник АОСВ, два угла которого прямые, а третий, ∠АОС= 20°.
Суммы углов выпуклого многоугольника 180°•(n-2), где n- количество сторон (и углов) многоугольника. Для четырехугольника сумма углов равна 360°.
∠АВС равен 360°-2•90°-20°=160°
Тогда сумма углов многоугольника равна 160n⇒
160°•n=180°•(n-2) ⇒
180°n-160n=360°
20n=360° ⇒
n=18