1) так как биссектриса DB на идет на основание равнобедренного треугольника то DB является так же высотой и медианой То есть EB=BF ∠ABE=∠ABF=90° в треугольниках ΔABE и ΔABF сторона AB общая а EB=BF ∠ABE=∠ABF это значит что они ровны ΔABE=ΔABF следует что гипотенузы ровны AE=AF, из того следует что ΔAEF равнобедренный!
2) есть ∠AKH=∠BKH и KH является высотой, то KH для треугольника AKB является так же медианой и биссектрисей Отсюда следует что AH=HB, значит CH для ACB так же медиана и биссектриса => наш треугольник ABC равнобедренный
3) так как по условии NC : CP = 3 : 2 и PC=4см то NC=CP*3/2=4*3/2=6 NC=6см, NP=NC+CP=6+4=10см допустим NM и DC пересекаются в точке O так как NM биссектриса то ∠DNM=∠CNM угол ∠NOD=∠NOC=90° отсюда следует что ΔDON=ΔCON( NO общий и два угла) DN=NC=6см
ответ 6см
4) Допустим боковые стороны равнобедренного треугольника x см основание будет x+4 периметр будет P=x+x+x+4=3x+4 по условии P=46 3x+4=46 3x=42 x=14
ответ 14,14,18
5)Допустим основание равнобедренного треугольника x см боковые будут 0,8x периметр будет P=x+0,8x+0,8x по условии P=78 2,6x=78 x=30
если разрезать данный треугольник пополам - по высоте, то получатся два прямоугольных треугольника, в которых
a=катет1= высота =6
b=катет2= половина основания =(х+6)/2
c=гипотенуза =боковая сторона = х
по теореме Пифагора
c^2 = a^2 +b^2
x^2 = 6^2 +((х+6)/2)^2
x^2 = 36 +(х+6)^2/4 - домножим обе части на 4
4x^2 = 144 +(х+6)^2
4x^2 = 144 +х^2+24x+36
4x^2 -х^2-24x-180=0
3x^2 -24x-180=0 - делим на 3
x^2 -8x-60=0
квадратное уравнение
D= 304
x1=4-2√19 < 0 - по смыслу не подходит
x2=4+2√19 - боковая сторона
6+x2 =6+4+2√19=10+2√19 или 2(5+√19) - основание
То есть EB=BF ∠ABE=∠ABF=90° в треугольниках ΔABE и ΔABF сторона AB общая а EB=BF ∠ABE=∠ABF это значит что они ровны ΔABE=ΔABF
следует что гипотенузы ровны AE=AF, из того следует что ΔAEF равнобедренный!
2) есть ∠AKH=∠BKH и KH является высотой, то KH для треугольника AKB является так же медианой и биссектрисей
Отсюда следует что AH=HB, значит CH для ACB так же медиана и биссектриса => наш треугольник ABC равнобедренный
3) так как по условии NC : CP = 3 : 2 и PC=4см то NC=CP*3/2=4*3/2=6
NC=6см, NP=NC+CP=6+4=10см
допустим NM и DC пересекаются в точке O
так как NM биссектриса то ∠DNM=∠CNM угол ∠NOD=∠NOC=90°
отсюда следует что ΔDON=ΔCON( NO общий и два угла)
DN=NC=6см
ответ 6см
4) Допустим боковые стороны равнобедренного треугольника x см
основание будет x+4
периметр будет P=x+x+x+4=3x+4 по условии P=46
3x+4=46
3x=42
x=14
ответ 14,14,18
5)Допустим основание равнобедренного треугольника x см
боковые будут 0,8x
периметр будет P=x+0,8x+0,8x по условии P=78
2,6x=78
x=30
ответ 30, 24, 24