Один із суміжних кутів дорівнює 38 градусів. Знайдіть кут, який утворить бісектриса даного кута зі стороною другого кута, що не є спільною? Треба пояснити
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
3 ед. и 7 ед.
Объяснение:
1. Чтобы определить проекции отрезков AC и BD, из точек A и B надо провести перпендикуляры AE и BF к плоскости α.
2. AE и BF - катеты прямоугольных треугольников АЕС и BFD.
3. AE и BF равны, как отрезки параллельных прямых между параллельными плоскостями.
4. Длины проекций CE и FD высчитаем из треугольников ACE и BDF.
CE+FD =10 по условию. => FD = 10 - CЕ.
По Пифагору АЕ² = АС² - СЕ² и BF² = BD² - FD² =>
81 - СЕ² = 121 - FD².
(10 - CE)² - CE² = 40 ед. =>
Длина CE = 3 ед.
5. Длина FD = 10-3 = 7 ед.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).