AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
Speaking Task 1. Choose the question from the card on the topic Entertainment and fedia^ prime prime and be ready to answer it after the teacher starts the conversation. Produce a speech by giving extended answers to the questions. Share your ideas with the class. Teacher organizes a Socratic seminar, which helps him/her to assess learners while they are speaking on the toplic Entertainment and Media and he/she prepares and cuts down questions and expressions beforehand. Learners sit in a circle and answer the question using in their speech some formal and Informal expressions to present logically connected information to their classmates. Expressions: Stating an opinion The way I see it... Sorry to interrupt, but... Is it okay if I jump in for a second? Can I add something here? Can I throw my two cents in? Not necessarily Interrupting If I might add something..... I beg to differ No, I'm not so sure about that That's for sure Expressing disagreement I'd say the exact opposite I have to side with somebody (name)on this one I was just going to say that In my opinion Expressing agreement If you ask me.. That's exactly how I feel As far as I'm concerned. If you want my honest opinion..... You have a point there That's not always the case
На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан