Треугольник ABC с прямым углом A. Биссектриса BL делит сторону AC на отрезки AL=2.4 см и LC=2.6 см. Это так, потому что есть теорема, что биссектриса делит сторону на отрезки, отношение которых прямопропорционально отношениям длин сторон. Т.е. в данном случае BC/AB=LC/AC. А т.к. гипотенуза больше катета, то именно LC=2.6 см. Значит, BC/AB=2.6/2.4=13/12. Пусть AB=x, тогда BC=13/12x. По теореме Пифагора: BC^2=AC^2+AB^2=x^2 (умножить на) 169/144=x^2+(2.4+2.6)^2=x^2 (умножить на) 169/144+25. Решаем уравнение и получаем, что x^2=144. Значит, x=12=AB, значит, BC=13. Считаем периметр - AB+BC+CA=12+13+5=30см.
Відповідь: 60°.
Пояснення:Дано: коло з центром в точці О. AM i АК - дотичні (А поза колом).
М і К - точки дотику. ОА - перетинає коло в точці N. N - середина ОА.
Знайти: ∟MAK.
Розв'язання:
Виконаємо додаткові побудови: ОМ i ОК - радіуси.
За властивістю дотичних до кола маємо:
ОМ ┴ МА; ОК ┴ АК та МА = АК.
Розглянемо ∆ОМА та ∆ОКА - прямокутні.
ОА - спільна сторона; ОМ = ОК - радіуси.
За ознакою piвностi прямокутних трикутників маємо: ∆ОМА = ∆ОКА,
звідси маємо: ∟MAO = ∟KAO.
За аксіомою вимірювання кутів маємо ∟MAK = ∟MAO + ∟KAO = 2∟MAO.
Розглянемо ∆ОМА - прямокутний.
∟OMA = 90°; ОМ = ON = R; N - середина ОА; якщо ON = NA i ON = R, тоді ОА = 2R.
За властивістю катета, який лежить навпроти кута 30°, маємо, якщо ОМ = R
та ОА = 2R, тоді ∟MAO = 30°. Звідси маємо ∟MAK = 30° • 2 = 60°.
Biдповідь: 60°.