один із зовнішніх кутів трикутника дорівнює 110. два внутрішніх кута трикутника не суміжні з ним відносяться як 5:6. знайдіть внутрішні кути трикутника.
Две пересекающиеся прямые лежат в одной плоскости. Существует теорема: через две пересекающиеся прямые проходит плоскость и при том только одна.
Чтобы прямая принадлежала плоскости, нужно, чтобы две точки прямой принадлежали плоскости. Аксиома: если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
В нашем случае мы проводим прямую через точку пересечения двух прямых. Через одну точку. Эта точка принадлежит плоскости. Все же остальные точки прямой могу плоскости не принадлежать.
Вывод: можно провести через точку пресечения двух прямых третью прямую, не лежащую с ними в одной плоскости. Причём таких прямых можно провести бесконечно много (см. рис.)
a^2 + b^2 = c^2
Пусть a < b < c
Если они составляют геом. прогрессию, то их длины удовлетворяют равенствам:
b = a*q
c = a*q^2
Подставляем
a^2 + a^2*q^2 = a^2*q^4
Сокращаем на a^2
1 + q^2 = q^4
q^4 - q^2 - 1 = 0
Биквадратное уравнение
D = 1 + 4 = 5
q1^2 = (1 + V(5))/2
q2^2 = (1 - V(5))/2 < 0 - не подходит.
Получаем
а - любое, например а = 1
b = a*q = кв.корню из ((1 + V(5))/2)
c = a*q^2 = (1 + V(5))/2
Проверяем
a^2 + b^2 = c^2
1 + (1 + V(5))/2 = ((1 + V(5))/2)^2
(3 + V(5)) / 2 = (1 + 2V(5) + 5) / 4 = (6 + 2V(5)) / 4 = (3 + V(5)) / 2
Верно
ответ: знаменатель прогрессии q = кв.корню из ((1 + V(5))/2)
Меньший катет а может быть любым.Напишите в ответе здесь
Существует теорема: через две пересекающиеся прямые проходит плоскость и при том только одна.
Чтобы прямая принадлежала плоскости, нужно, чтобы две точки прямой принадлежали плоскости.
Аксиома: если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
В нашем случае мы проводим прямую через точку пересечения двух прямых. Через одну точку. Эта точка принадлежит плоскости.
Все же остальные точки прямой могу плоскости не принадлежать.
Вывод: можно провести через точку пресечения двух прямых третью прямую, не лежащую с ними в одной плоскости. Причём таких прямых можно провести бесконечно много (см. рис.)