Поскольку пирамида правильная, то: 1) в основании равносторонний треугольник (АВ = ВС = АС = 3); 2) боковые ребра пирамиды также одинаковы между собой (SA = SB = SC). Площадь боковой поверхности правильной пирамиды вычисляется по формуле: S = 1/2*p*a (где р = полупериметр основания (равен 9/2), а = апофема). Рассмотрим треугольник SAB. Он равнобедренный (т.к. ребра пирамиды в данном случае одинаковы). А поскольку М - середина АВ, то отрезок SM - медиана этого треугольника. И по св-ву равнобедренного треугольника является также высотой. Отсюда следует, что SM - апофема боковой грани SAB. Ее мы найдем из формулы площади боковой поверхности: 45 = 1/2*9*а откуда а = 10. Значит, SM = 10.
Расположение точки В нам неизвестно, но предполагаем, что она находится на окружности.
Угол АВС - вписанный, опирающийся на дугу АС, что и центральный угол АОС. Градусная мера вписанного угла равна половине градусной меры центрального угла, опирающегося на ту же дугу. Градусная мера центрального угла равна градусной мере дуги, на которую он опирается.
Следовательно, возможны два варианта:
1. Точка В лежит на большой дуге АС окружности и
∠АВС = (1/2)·∠АОС = 130:2 = 65°.
2. Точка В лежит на малой дуге АС окружности и тогда дуга АС имеет градусную меру:
Площадь боковой поверхности правильной пирамиды вычисляется по формуле: S = 1/2*p*a (где р = полупериметр основания (равен 9/2), а = апофема).
Рассмотрим треугольник SAB. Он равнобедренный (т.к. ребра пирамиды в данном случае одинаковы). А поскольку М - середина АВ, то отрезок SM - медиана этого треугольника. И по св-ву равнобедренного треугольника является также высотой.
Отсюда следует, что SM - апофема боковой грани SAB.
Ее мы найдем из формулы площади боковой поверхности:
45 = 1/2*9*а
откуда а = 10. Значит, SM = 10.
1. ∠АВС = 65°.
2. ∠АВС = 115°.
Объяснение:
Расположение точки В нам неизвестно, но предполагаем, что она находится на окружности.
Угол АВС - вписанный, опирающийся на дугу АС, что и центральный угол АОС. Градусная мера вписанного угла равна половине градусной меры центрального угла, опирающегося на ту же дугу. Градусная мера центрального угла равна градусной мере дуги, на которую он опирается.
Следовательно, возможны два варианта:
1. Точка В лежит на большой дуге АС окружности и
∠АВС = (1/2)·∠АОС = 130:2 = 65°.
2. Точка В лежит на малой дуге АС окружности и тогда дуга АС имеет градусную меру:
360° - 130° = 230° =>
∠АВС = (1/2)·230° = 115°.