В таких заданиях в основном ведётся работа с формулами. Прежде, чем притупить к заданям, вспомним формулу основного тригоносетрического тождества, которая в основном тут и будет использоваться:
1) Если мы воспользуемся основным тригоносетрическим тождеством, выразив оттуда косинус в квадрате, то получим как раз таки это выражение, значит его можно упростить так:
2) Аналогично предыдущему, тоже опираясь на основное тригоносетрическое тождество, получим:
3) Это выражение для начала можно сложить по формуле разности квадратов, после чего преобразуем полученное выражение так же, как и во втором:
4) Опять же, опираясь на основное тригоносетрическое тождество можно синус в квадрате плюс косинус в квадрате заменить на единицу, в результате чего мы получим:
5) Вынесем за скобку синус, а полученное выражение преубразуем, опять же, как во втором пункте:
В таких заданиях в основном ведётся работа с формулами. Прежде, чем притупить к заданям, вспомним формулу основного тригоносетрического тождества, которая в основном тут и будет использоваться:
1) Если мы воспользуемся основным тригоносетрическим тождеством, выразив оттуда косинус в квадрате, то получим как раз таки это выражение, значит его можно упростить так:
2) Аналогично предыдущему, тоже опираясь на основное тригоносетрическое тождество, получим:
3) Это выражение для начала можно сложить по формуле разности квадратов, после чего преобразуем полученное выражение так же, как и во втором:
4) Опять же, опираясь на основное тригоносетрическое тождество можно синус в квадрате плюс косинус в квадрате заменить на единицу, в результате чего мы получим:
5) Вынесем за скобку синус, а полученное выражение преубразуем, опять же, как во втором пункте:
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).