ответ 14,4 см. Раз биссектриса перпендикулярна, значит она является ещё и медианой и делит сторону пополам. Тогда ВС = 4,8 см (т. к. ВМ - половина). Треугольник равносторонний, т. к. ещё сказано, что высота ВК, проведённая к АС, делит сторону пополам, а, следовательно, является медианой. Если мы проведём из точки С ещё одну высоту, то она также будет являться медианой и биссектрисой. И все три биссектрисы (или высота и медианы) пересекуться в одной точке. Чтобы найти периметр надо просто 4,8 умножить на 3. Получим 14,4 см.
Дано:
ABCD - ромб
диагональ АС = 6√3 см
сторона ромба 6 см
Найти: углы ромба
Решение
Рассмотрим ΔАОВ. Он прямоугольный, так как диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам.
АВ = 6 см - гипотенуза ΔАОВ;
АО = АС:2 = (6√3) :2 = 3√3 см - катет рассматриваемого треугольника АОВ.
найдем второй катет ОВ.
ОВ²=АВ²-АО² = 6²- (3√3)² = 36-27=9
ОВ = √9 = 3 см.
Так как катет ОВ равен половине гипотенузы АВ, то напротив него лежит угол 30°. (∠ОАВ).
Соответственно, ∠АВО = 90-30 = 60°.
Так как диагонали ромба делят углы ромба пополам, несложно посчитать все углы ромба. Противоположные углы ромба равны.
∠DAB = ∠BCD = 30*2 = 60°
∠ADC = ∠ABC = 60*2 = 120°
ответ: углы ромба 60°, 60°, 120°, 120°.