Дано: BC║AD; BD⊥AB; ∠BAD=52°; BC=DC.
Найти: ∠ABC, ∠BCD и ∠CDA.
∠BAD+∠ADB+∠DBA = 180° как сумма углов ΔBAD.
∠ADB = 180°-∠DBA-∠BAD = 180°-90°-52° = 38°
∠ADB = ∠DBC как накрест лежащие углы при параллельных прямых BC, AD и секущей DB.
∠DBC = ∠ADB = 38°.
ΔBCD - равнобедренный (по условию BC=DC), поэтому углы при его основании равны (∠DBC=∠BDC).
∠BDC = ∠DBC = 38°.
∠BCD = 180°-∠BDC-∠DBC = 180°-38°-38° = 104° т.к. сумма углов в треугольнике равна 180°.
∠ABC = ∠DBA+∠DBC = 90°+38° = 128°.
∠CDA = ∠ADB+∠BDC = 38°+38° = 76°.
ответ: 128°, 104° и 76°.
Дано: BC║AD; BD⊥AB; ∠BAD=52°; BC=DC.
Найти: ∠ABC, ∠BCD и ∠CDA.
∠BAD+∠ADB+∠DBA = 180° как сумма углов ΔBAD.
∠ADB = 180°-∠DBA-∠BAD = 180°-90°-52° = 38°
∠ADB = ∠DBC как накрест лежащие углы при параллельных прямых BC, AD и секущей DB.
∠DBC = ∠ADB = 38°.
ΔBCD - равнобедренный (по условию BC=DC), поэтому углы при его основании равны (∠DBC=∠BDC).
∠BDC = ∠DBC = 38°.
∠BCD = 180°-∠BDC-∠DBC = 180°-38°-38° = 104° т.к. сумма углов в треугольнике равна 180°.
∠ABC = ∠DBA+∠DBC = 90°+38° = 128°.
∠CDA = ∠ADB+∠BDC = 38°+38° = 76°.
ответ: 128°, 104° и 76°.