Радиус окружности, вписанной в прямоугольный тр-к вычисляется по формуле:
r = (a+b-c)/2 , где а,b - катеты, с - гипотенуза
По теореме Пифагора: с² = а² + в² = 8² + 6² = 100
с = 10
r = (a+b-c)/2 = (8 + 6 - 10)/2 = 2.
Центр окружности, вписанной в тр-к находится на пересечении биссектрис. биссектриса прямого угла составляет с каждой из его сторон угол в 45°, поэтому отрезок СО биссектрисы, являющий ся расстоянием от вершины С до центра окружности найдётся ка
ОС = r/сos45° = 2/ (1/√2) = 2√2
ответ: расстояние от центра вписанной окружности до вершины С равно 2√2
Дано: ∆ABC - равнобедренный ∆A1B1C1 - равнобедренный AB = A1B1 ∠A = ∠A1 AM - медиана ∆ABC A1M1 - медиана ∆A1B1C1 ------------------------------------- Доказать, что AM = A1M1
Док-во:
Рассмотрим ∆ABC и ∆A1B1C1. ∠B = ∠C = (180° - ∠A)/2 ∠B1 = ∠C1 = (180° - ∠A1)/2 ∠A = ∠A1 => ∠B = ∠B1 ∠A = ∠A1 ∠B = ∠B1 AB = A1B1 Значит, ∆ABC = ∆A1B1C1 - по II признаку. Из равенства треугольников =. BC = B1C1 и AC = A1C1
Рассмотрим ∆AMC и ∆A1M1C1. MC = 1/2BC M1C1 = 1/1B1C1 BC = B1C1 => MC = M1C1. ∠C = ∠C1 AC = A1C1 Значит, ∆AMC = ∆A1M1C1 - по I признаку. Из равенства треугольников => AM = A1M1.
Радиус окружности, вписанной в прямоугольный тр-к вычисляется по формуле:
r = (a+b-c)/2 , где а,b - катеты, с - гипотенуза
По теореме Пифагора: с² = а² + в² = 8² + 6² = 100
с = 10
r = (a+b-c)/2 = (8 + 6 - 10)/2 = 2.
Центр окружности, вписанной в тр-к находится на пересечении биссектрис. биссектриса прямого угла составляет с каждой из его сторон угол в 45°, поэтому отрезок СО биссектрисы, являющий ся расстоянием от вершины С до центра окружности найдётся ка
ОС = r/сos45° = 2/ (1/√2) = 2√2
ответ: расстояние от центра вписанной окружности до вершины С равно 2√2
∆ABC - равнобедренный
∆A1B1C1 - равнобедренный
AB = A1B1
∠A = ∠A1
AM - медиана ∆ABC
A1M1 - медиана ∆A1B1C1
-------------------------------------
Доказать, что AM = A1M1
Док-во:
Рассмотрим ∆ABC и ∆A1B1C1.
∠B = ∠C = (180° - ∠A)/2
∠B1 = ∠C1 = (180° - ∠A1)/2
∠A = ∠A1 => ∠B = ∠B1
∠A = ∠A1
∠B = ∠B1
AB = A1B1
Значит, ∆ABC = ∆A1B1C1 - по II признаку.
Из равенства треугольников =. BC = B1C1 и AC = A1C1
Рассмотрим ∆AMC и ∆A1M1C1.
MC = 1/2BC
M1C1 = 1/1B1C1
BC = B1C1 => MC = M1C1.
∠C = ∠C1
AC = A1C1
Значит, ∆AMC = ∆A1M1C1 - по I признаку.
Из равенства треугольников => AM = A1M1.