В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Kikinaxxxxxx
Kikinaxxxxxx
05.06.2021 10:16 •  Геометрия

Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований 1)доказать, что расстояние между центрами окружностей равно большей боковой стороне трапеции 2)найти расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной делит ее на отрезки , равные 2 и 50. распишите !

Показать ответ
Ответ:
катя4812
катя4812
02.10.2020 11:22
Окружности будут равные, т.к. их диаметры равны, как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции))
центры окружностей расположены на биссектрисах соотв углов: CO1,  DO1, CO2, DO2
CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов)))
аналогично CO2 _|_ DO2
CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2
радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции)))
отрезки касательных к окружности, проведенных из одной точки, равны)))
Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продол
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота