Высота правильной треугольной пирамиды равна H, а двугранный угол пирамиды при ее боковом ребре равен α. Найди объем пирамиды.
ответ: √3 * (3 - ctg²(α/2) ) / 4ctg² (α/2) * H ³
Объяснение:
Пусть ABC основание пирамиды , DO ее высота _ DO ⊥ пл. (ABC) . Пирамида правильная, следовательно O центр треугольника ABC. Обозначаем AB=BC=CA = a . V =(1/3)*S(ABC)*DO = (1/3)*(a²√3)/4 *H .
! Нужно вычислить только a. Покажем двугранный угол при ее боковом ребре DC (вернее линейный угол α). Поведем высоту AE треугольника ADC: AE⊥ DC и точка E соединим с B.
ΔBCE=ΔACE по первому признаку равенства: CE _общая , BC =AC и ∠BCD=∠ACD. ⇒AE=BE, ∠BEC=∠AEC =90° , т.е. еще и ∠BE⊥ DC.
Получили ∠AEB = α линейный угол двугранного угла при боковой ребре DC. Проведем высоту (медиану CM) треугольника ABC и M соединяем с вершиной D пирамиды .
--- общеизвестно O ∈ [CM] и CM=a√3 /2 и OC =(2/3)*CM=a /√3 ---
Т.к. DC⊥ EA и DC ⊥ EB ⇒ DC ⊥ пл.(AEB) ⇒ DC ⊥ EM .
! площадь треугольника MAC:
S( MAC)= (1/2)MC*DO =(1/2)DC*EM (1)
Но легко получить EM=(a/2)ctg(α/2) исходя из того что в равнобедренном треугольнике AEM медиана EM одновременно и биссектриса и высота .
(1/2)a√3 /2*H =(1/2)DC*(a/2)ctg(α/2) ⇒ DC =√3 H/ctg(α/2).
* * * * * * * * * * * * * * * * * * * * * * *
Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° , ∠BCD =135°, а CD = 27.
ответ: 9√6.
Объяснение: Через вершину B проведем прямую параллельную
боковой стороне СD до пересечения с основанием AD в точке E .
BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .
Из ΔBAE : AB/sin(∠BEA) = BE/sin(∠BEA) * * *теорема синусов * * *
AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =
= 9√6. * * * sin45°= (√2)/2 , sin60°=(√3)/2 * * *
* * * * * * * * * * * * * * * * * * * * * *
Высота правильной треугольной пирамиды равна H, а двугранный угол пирамиды при ее боковом ребре равен α. Найди объем пирамиды.
ответ: √3 * (3 - ctg²(α/2) ) / 4ctg² (α/2) * H ³
Объяснение:
Пусть ABC основание пирамиды , DO ее высота _ DO ⊥ пл. (ABC) . Пирамида правильная, следовательно O центр треугольника ABC. Обозначаем AB=BC=CA = a . V =(1/3)*S(ABC)*DO = (1/3)*(a²√3)/4 *H .
! Нужно вычислить только a. Покажем двугранный угол при ее боковом ребре DC (вернее линейный угол α). Поведем высоту AE треугольника ADC: AE⊥ DC и точка E соединим с B.
ΔBCE=ΔACE по первому признаку равенства: CE _общая , BC =AC и ∠BCD=∠ACD. ⇒AE=BE, ∠BEC=∠AEC =90° , т.е. еще и ∠BE⊥ DC.
Получили ∠AEB = α линейный угол двугранного угла при боковой ребре DC. Проведем высоту (медиану CM) треугольника ABC и M соединяем с вершиной D пирамиды .
--- общеизвестно O ∈ [CM] и CM=a√3 /2 и OC =(2/3)*CM=a /√3 ---
Т.к. DC⊥ EA и DC ⊥ EB ⇒ DC ⊥ пл.(AEB) ⇒ DC ⊥ EM .
! площадь треугольника MAC:
S( MAC)= (1/2)MC*DO =(1/2)DC*EM (1)
Но легко получить EM=(a/2)ctg(α/2) исходя из того что в равнобедренном треугольнике AEM медиана EM одновременно и биссектриса и высота .
(1/2)a√3 /2*H =(1/2)DC*(a/2)ctg(α/2) ⇒ DC =√3 H/ctg(α/2).
Из ΔDOC по теореме Пифагора : OC²=DС²- DO²
( a/√3) ² = (√3*H/ctg(α/2) ² - H² ⇔ a²/3= (3/ctg²(α/2) -1 )*H ²
a² =3(3 - ctg²(α/2) ) /ctg²(α/2) * H²
V = (1/3)*3(3 - ctg²(α/2) )/ctg² (α/2) √3 /4 *H³
V = √3 * (3 - ctg²(α/2) ) / 4ctg² (α/2) * H³