Смотрите рисунок. Прямая АВ, перпендикуляр АА1 на плоскость "а" и проекция на плоскость прямой АВ образуют прямоугольный треугольник с углом АВА1 = 30 градусов и прямым углом АА1В. В прямоугольном треугольнике против угла 30 градусов лежит катет равный половине гипотенузы. Следовательно, 1) АА1= АВ/2 = 24/2 = 12 см. Из теоремы Пифагора (ВА1)²= (АВ)² – (АА1)² = 24² – 12² = 576 – 144 = 432. Отсюда ВА1 = √432 = 12√3 Если АА1 обозначить Х, то АВ = 2Х. Тогда в общем виде квадрат длины проекции (ВА1)² = (2Х)² – X²=3Х², а ВА1 = Х√3. Таким образом, можно сразу записать, что 2) ВА1 = 8√3. А вспомнив, что катет против 30 градусов равен половине гипотенузы, имеем АВ = АА1*2 = 8*2 = 16 см 3) Квадрат ВА1 = 15² = 225. И это равно 3Х². Т.е. 225 = 3Х². Отсюда Х²=225/3 = 75. Тогда Х = √75 = 5√3. За Х мы приняли АА1. Значит АА1 = Х = 5√3. Тогда АВ = 2Х= 2*5√3 = 10√3
2) треугольник со стороной-диагональю, равной стороне параллелограмма будет равнобедренным => диагональ, равная стороне, лежит против острого угла (углы при основании равнобедренного треуг. равны и не могут быть тупыми, а второй угол параллелограмма = 180-60 = 120)
в равнобедренном треуг. угол при основании = 60 => треуг.равносторонний => параллелограмм=ромб
Прямая АВ, перпендикуляр АА1 на плоскость "а" и проекция на плоскость прямой АВ образуют прямоугольный треугольник с углом АВА1 = 30 градусов и прямым углом АА1В. В прямоугольном треугольнике против угла 30 градусов лежит катет равный половине гипотенузы. Следовательно,
1) АА1= АВ/2 = 24/2 = 12 см. Из теоремы Пифагора (ВА1)²= (АВ)² – (АА1)² = 24² – 12² = 576 – 144 = 432. Отсюда ВА1 = √432 = 12√3
Если АА1 обозначить Х, то АВ = 2Х. Тогда в общем виде квадрат длины проекции (ВА1)² = (2Х)² – X²=3Х², а ВА1 = Х√3. Таким образом, можно сразу записать, что
2) ВА1 = 8√3. А вспомнив, что катет против 30 градусов равен половине гипотенузы, имеем АВ = АА1*2 = 8*2 = 16 см
3) Квадрат ВА1 = 15² = 225. И это равно 3Х². Т.е. 225 = 3Х². Отсюда Х²=225/3 = 75. Тогда Х = √75 = 5√3. За Х мы приняли АА1. Значит АА1 = Х = 5√3. Тогда АВ = 2Х= 2*5√3 = 10√3
2) треугольник со стороной-диагональю, равной стороне параллелограмма будет равнобедренным => диагональ, равная стороне, лежит против острого угла (углы при основании равнобедренного треуг. равны и не могут быть тупыми, а второй угол параллелограмма = 180-60 = 120)
в равнобедренном треуг. угол при основании = 60 => треуг.равносторонний => параллелограмм=ромб
высота параллелограмма = корень(14*14-7*7) = корень((14-7)*(14+7)) = корень(7*21) = корень(7*3*7) = 7*корень(3)
S = a*h = 14 * 7*корень(3) = 98*корень(3)
1) а в первой задаче мне кажется данных не хватает...