Одна з діагоналей трапеції дорівнюе 28 см і поділяе другу діагональ на відрізки завдовжки 5 см і 9 см. знайдіть більшу основу трапеції і відрізки, на які точка перетину дагоналей поділяє першу діагональ, якщо менша основа дорівнює б см.
1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
А) ∆AOD = ∆COB, AD=BC. ∆AOC = ∆DOB, AC=BD. Это на плоскости. А так как у треугольников АСВ и ADB высоты (высота цилиндра) одинаковы. то это равенство верно и для цилиндра.
б) Применим координатный метод. Проведем образующие цилиндра АА1, ВВ1, СС1 и DD1. Получили прямоугольную призму АD1BC1A1DB1C. В ней углы при вершинах попарно перпендикулярны, то есть =90°. Тогда по Пифагору A1A²+А1D²=AD², A1A²+A1C²=CD², A1C²+A1D²=CD² или A1A²+А1D²=64 (1), A1A²+A1C²=36 (2), A1C²+A1D²=36 (3). Из (1) и (2) получаем: A1D²-A1C²=28 (4), а из (3) и (4) получаем: A1D²=32. Тогда A1A²=32, а A1C²=4. Итак, мы получили измерения нашей призмы и, следовательно, координаты ее вершин: А(2;0;0), В(0;4√2;0), С(0;0;4√2) и D(2;4√2;4√2). Имея координаты вершин пирамиды АВСD, мы можем найти и высоту этой пирамиды - расстояние от вершины D до плоскости АВС, и ее объем (найдя по Герону площадь треугольника AВС: Sacb=√(10*4*4*2)=8√5). Найдем высоту пирамиды. Уравнение ее основания (плоскости АВС) найдем через определитель по формуле:
|Х-Хa Xb-Xa Xc-Xa| |Y-Ya Yb-Ya Yc-Ya| = 0. |Z-Za Zb-Za Zc-Za| Подставим данные нам значения координат точек А, B и С: |X-2 0-2 0-2| |Y-0 4√2-0 0-0| =0 |Z-0 0-0 4√2-0| Решаем определитель по первому столбцу: (X-2)(32)+8√2*Y8+√2*Z=0 => 32*X+8√2*Y+8√2*Z-64=0 То есть коэффициенты уравнения равны: А=32, В=8√2, С=8√2 D=-64. Теперь найдем расстояние от точки D до плоскости α (ABC) по формуле: L(D;α) = |A*Xd+B*Yd+C*Zd+D|/√(A²+B²+C²). Подставляя известные нам значения имеем: L(D;α) =128/√(128+1024+128) = 128/16√5 =8/√5. Тогда объем пирамиды ABCD равен V=(1/3)*8√5*8/√5 =64/3= 21и1/3. ответ: Vabcd=21и 1/3.
1. Pabcd = 40 дм. 2. Sabc = 512 см².
Объяснение:
1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
Sabc = 2*256 = 512 см².
Это на плоскости. А так как у треугольников АСВ и ADB высоты (высота цилиндра) одинаковы. то это равенство верно и для цилиндра.
б) Применим координатный метод. Проведем образующие цилиндра АА1, ВВ1, СС1 и DD1. Получили прямоугольную призму АD1BC1A1DB1C.
В ней углы при вершинах попарно перпендикулярны, то есть =90°.
Тогда по Пифагору A1A²+А1D²=AD², A1A²+A1C²=CD², A1C²+A1D²=CD² или A1A²+А1D²=64 (1), A1A²+A1C²=36 (2), A1C²+A1D²=36 (3).
Из (1) и (2) получаем: A1D²-A1C²=28 (4), а
из (3) и (4) получаем: A1D²=32. Тогда A1A²=32, а A1C²=4.
Итак, мы получили измерения нашей призмы и, следовательно, координаты ее вершин:
А(2;0;0), В(0;4√2;0), С(0;0;4√2) и D(2;4√2;4√2).
Имея координаты вершин пирамиды АВСD, мы можем найти и высоту этой пирамиды - расстояние от вершины D до плоскости АВС, и ее объем (найдя по Герону площадь треугольника AВС: Sacb=√(10*4*4*2)=8√5).
Найдем высоту пирамиды. Уравнение ее основания (плоскости АВС) найдем через определитель по формуле:
|Х-Хa Xb-Xa Xc-Xa|
|Y-Ya Yb-Ya Yc-Ya| = 0.
|Z-Za Zb-Za Zc-Za|
Подставим данные нам значения координат точек А, B и С:
|X-2 0-2 0-2|
|Y-0 4√2-0 0-0| =0
|Z-0 0-0 4√2-0|
Решаем определитель по первому столбцу:
(X-2)(32)+8√2*Y8+√2*Z=0 => 32*X+8√2*Y+8√2*Z-64=0
То есть коэффициенты уравнения равны: А=32, В=8√2, С=8√2 D=-64.
Теперь найдем расстояние от точки D до плоскости α (ABC) по формуле:
L(D;α) = |A*Xd+B*Yd+C*Zd+D|/√(A²+B²+C²). Подставляя известные нам значения имеем:
L(D;α) =128/√(128+1024+128) = 128/16√5 =8/√5.
Тогда объем пирамиды ABCD равен V=(1/3)*8√5*8/√5 =64/3= 21и1/3.
ответ: Vabcd=21и 1/3.