В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dvladimirov425
dvladimirov425
13.07.2020 23:14 •  Геометрия

Одна із сторін AE правильного п'ятикутника ABCDE знаходиться на площині a, інша - поза площиною a. Чи будуть серед сторін цього пятикутника такі, які були б паралельні площині a?

Показать ответ
Ответ:
vladimirnishta1
vladimirnishta1
13.08.2021 16:52
ответ:

27\sqrt{3} ед².

Объяснение:

Обозначим данную пирамиду буквами EABC.

AB=6 ед.

Проведём высоту EO. Точка O - центр \triangle ABC - точка пересечения, медиан, высот и биссектрис треугольника.

Проведём апофему EH (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне BC основания пирамиды.

Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.

\Rightarrow AB = BC = AC = 6.

Проведём высоту AH в \triangle ABC.

Т.к. \triangle ABC - равносторонний ⇒ AH - высота, медиана, биссектриса.

\Rightarrow BH = HC = BC:2 = 6:2 = 3

Высота AH и апофема EH имеют общее основание, а именно точку H, т.к. AH - медиана, а апофема EH делит BC пополам (по свойству).

\angle EHO = 60^{\circ}.

Рассмотрим \triangle AHC:

\triangle AHC - прямоугольный, так как AH - высота.

Найдём высоту AH по теореме Пифагора: (a^2 = c^2 - b^2)

AH = \sqrt{AB^2 - BH^2} = \sqrt{6^2 - 3^2} = \sqrt{27} = 3\sqrt{3} ед.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.

\Rightarrow OH = 1/3AH = 1/3 \cdot 3\sqrt{3} = \sqrt{3} ед.

AO = 2/3AH = 2/3 \cdot 3\sqrt{3} = 2\sqrt{3} ед.

Рассмотрим \triangle EOH:

\triangle EOH - прямоугольный, так как EO - высота.

Если угол прямоугольного треугольника равен 60^{\circ}, то напротив лежащий катет равен произведению меньшего катета на \sqrt{3}.

EO = OH \cdot \sqrt{3} = \sqrt{3} \cdot \sqrt{3}= 3 ед.

Найдём апофему по теореме Пифагора: (c^2 = a^2 + b^2)

EH = \sqrt{EO^2 + OH^2} = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3} ед.

====================================================

S полн. поверх. = S основ. + S бок.поверх.

S осн. = S_{\triangle ABC} = \dfrac{AB^2\sqrt{3}}{4} = \dfrac{6^2\sqrt{3}}{4} = 9\sqrt{3} ед².

S бок. поверх. = 1/2 \: \cdot (P осн. \cdot \: L), где L - апофема.

P осн. = AB + BC + AC = 6 + 6 + 6 = 18 ед.

S бок. поверх. = 1/2\cdot(18 \cdot 2\sqrt{3}) = 18\sqrt{3} ед².

S полн. поверх. = 9\sqrt{3} + 18\sqrt{3} = 27\sqrt{3} ед².


сторона основания правильной треугольной пирамиды равна 6 боковая грань наклонена к плоскости основа
0,0(0 оценок)
Ответ:
GagarinPSK
GagarinPSK
08.08.2020 18:20
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота