Одне із двох рівних кіл проходить через центр іншого кола. Обчисліть довжину хорди якщо радіус кіл 20. А) 20 корней из 6 Б) 10 корней из 3 В) 10 Г) 20 корней из 3 Д) 20
Cумма односторонних углов при параллельных прямых равна 180°. ∠A+∠B=180° <=> 180° -2∠AMD +180° -2∠BMC =180° <=> ∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов. ∠CMD =∠CMN+∠DMN =∠BMN/2+∠AMN/2 =180/2 =90.
Пусть m - прямая, проходящая через точку А, и k - прямая, проходящая через точку В.
Через две параллельные прямые проходит единственная плоскость.
По условию k║m, значит эти прямые лежат в одной плоскости α.
А∈m, m∈α, ⇒ A∈α
B∈k, k∈α, ⇒ B∈α.
Пусть М - точка пересечения прямых m и а, К - точка пересечения прямых k и а.
Тогда точки К и М также лежат в плоскости α.
По аксиоме: если две точки прямой лежат в плоскости, то и все точки прямой лежат в этой плоскости,
значит а∈α.
Итак, точки А, В и прямая а лежат в одной плоскости.
BC/AB=1/2 <=> BC= AB/2 =MB
△BMC - равнобедренный.
∠BMC=∠BCM
Аналогично ∠AMD=∠ADM
∠A= 180°-∠AMD-∠ADM =180°-2∠AMD
∠B= 180°-∠BMC-∠BCM =180°-2∠BMC
Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
∠CMD =∠CMN+∠DMN =∠BMN/2+∠AMN/2 =180/2 =90.