Одно из сечений пирамиды MABC плоскостью, параллельной основанию, - равнобедренный треугольник со сторонами 0,1 и 0,2. Боковые грани образуют равные углы с плоскостью основания. Другая плоскость а, также параллельная основанию, пересекает высоту МО пирамиды в точке Р так, что MP : MO = 2:5. В образовавшуюся при этом усеченную пирамиду вписан прямой цилиндр с верхним основанием, вписанным в сечение пирамиды плоскостью a. Объем цилиндра равен 10,08л. Площадь сечения 17,5V15
. Найдите площадь Найдите площадь
пирамиды, которое делит ее на две равные пирамиды, равна боковой поверхности пирамиды.
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.