Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
Нарисуем трапецию АВСД. Проведем линию КМ, соединяющую середины оснований. ВК=КС=6:2=3 АМ=МД=11:2=5,5 Опустим высоту КН, для того, чтобы из треугольника КНМ найти затем КМ. Проведем КЕ параллельно АВ и КТ параллельно СД. АЕ=ВК=ТД=КС=3 КЕ=ВА=3 КТ=СД=4 ЕТ=АД-АЕ-ТД=11-3-3=5 Получен треугольник КЕТ со сторонами 3,4,5. Найдем площадь треугольника КЕТ по форуле Герона. Вычисления приводить не буду, не в них смысл данного решения. S КЕТ=6 Высоту КН треугольника КЕТ найдем из площади треугольника . S(КЕТ)=ЕТ*КН:2 КН=2S:ЕТ=12:5=2,4 По т. Пифагора из прямоугольного треугольника КНТ найдем НТ. НТ равна 3,2 ( опять же не привожу вычисления - можно проверить). НМ=НД-МД МД=5,5 по условию. НД=ТД+НТ=3+3,2=6,2 НМ=6,2-5,5=0,7 КМ найдем по т. Пифагора: КМ²=КН²+МН²=2,4²+0,7²=6,25 КМ=√6,25=2,5 см
75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
Проведем линию КМ, соединяющую середины оснований.
ВК=КС=6:2=3
АМ=МД=11:2=5,5
Опустим высоту КН, для того, чтобы из треугольника КНМ найти затем КМ.
Проведем КЕ параллельно АВ и КТ параллельно СД.
АЕ=ВК=ТД=КС=3
КЕ=ВА=3
КТ=СД=4
ЕТ=АД-АЕ-ТД=11-3-3=5
Получен треугольник КЕТ со сторонами 3,4,5.
Найдем площадь треугольника КЕТ по форуле Герона.
Вычисления приводить не буду, не в них смысл данного решения.
S КЕТ=6
Высоту КН треугольника КЕТ найдем из площади треугольника . S(КЕТ)=ЕТ*КН:2
КН=2S:ЕТ=12:5=2,4
По т. Пифагора из прямоугольного треугольника КНТ найдем НТ.
НТ равна 3,2 ( опять же не привожу вычисления - можно проверить).
НМ=НД-МД
МД=5,5 по условию.
НД=ТД+НТ=3+3,2=6,2
НМ=6,2-5,5=0,7
КМ найдем по т. Пифагора:
КМ²=КН²+МН²=2,4²+0,7²=6,25
КМ=√6,25=2,5 см