Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую. Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата, ВА - проекция наклонной FA на плоскость АВС, значит FA⊥AD по теореме о трех перпендикулярах. Значит, FA - расстояние от точки F до прямой AD. Из ΔABF по теореме Пифагора: FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата, ВС - проекция наклонной FС на плоскость АВС, значит FС⊥СD по теореме о трех перпендикулярах. Значит, FС - расстояние от точки F до прямой СD. ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны, ВО - проекция FO на плоскость АВС, значит FO⊥AC по теореме о трех перпендикулярах. FO - расстояние от точки F до прямой АС. ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата, Из ΔFBO по теореме Пифагора: FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
Пусть ∠C = 2y, ∠BAD = α, ∠CAD = 3α, CE – диаметр описанной окружности ω треугольника CDO. Тогда ∠ODE = ∠OCE = y, ∠CDE = 90°, ∠DEC = 90° – 2y. Точка A лежит на продолжении отрезка DO за точку O, поэтому она находится дальше от центра ω, чем точка O. Значит, DEC – внешний угол треугольника ADE, откуда ∠DEC = 90° – 2y = 3α + y, то есть α = 30° – y. Поэтому ∠B = 180° – 2y – 4α = 60° + 2y. По теореме синусов и условию задачи sin2y/sin(60°+2y)=2/3. После очевидных преобразований получим: 3 sin2y = √3 cos2y + sin2y, tg2y = √3/2, откуда cos²2y=1/1+tag²2y = 4/7, а так как 2y < 90° (как острый угол прямоугольного треугольника CDE), то cos 2y = 2/√7. ответ: 2/√7.
Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата,
ВА - проекция наклонной FA на плоскость АВС, значит
FA⊥AD по теореме о трех перпендикулярах.
Значит, FA - расстояние от точки F до прямой AD.
Из ΔABF по теореме Пифагора:
FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата,
ВС - проекция наклонной FС на плоскость АВС, значит
FС⊥СD по теореме о трех перпендикулярах.
Значит, FС - расстояние от точки F до прямой СD.
ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда
FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны,
ВО - проекция FO на плоскость АВС, значит
FO⊥AC по теореме о трех перпендикулярах.
FO - расстояние от точки F до прямой АС.
ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата,
Из ΔFBO по теореме Пифагора:
FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
d(F ; AB) = d(F ; BC) = d (F ; BD) = 8 дм
d(F ; AD) = d(F ; CD) = 4√5 дм
d(F ; AC) = 6√2 дм
По теореме синусов и условию задачи sin2y/sin(60°+2y)=2/3. После очевидных преобразований получим: 3 sin2y = √3 cos2y + sin2y, tg2y = √3/2, откуда cos²2y=1/1+tag²2y = 4/7, а так как 2y < 90° (как острый угол прямоугольного треугольника CDE), то cos 2y = 2/√7.
ответ: 2/√7.