Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем
Объяснение:
12) Рассмотрим треугольник MNP.
MK - высота, MK = KN => Треугольник МNP - равнобед. (свойство высоты равнобедренного треугольника)
Угол М = угол N = 60 градусов (углы при основании)
Угол MPN = 180 - угол М - угол N = 180 - 60 - 60 = 60 градусов
Угол KPN = угол КРМ = 0,5 * 60 (угол MPN) = 30 градусов (КР - биссектриса, медиана, высота)
13) Рассмотрим треугольник SKP.
SK = KP => треугольник SKP - равнобед.
Угол SKP = Угол SKT * 2 = 25 * 2 = 50 градусов (KT - высота проведённая к основанию => KT - медиана, биссектриса)
Угол P = (180 - угол SKT):2 = (180 - 50):2 = 65 градусов
Угол P = угол S = 65 градусов (углы при основании)