Рассмотрим диагональ трапеции МК и медиану треугольника РАК - КН . Диагональ проходит точку К и точку пересечения медиан, медиана также проходит точку К и точку пересечения медиан, значит медиана КС честь диагонали МК. Аналогично доказывается, что медиана РН - чеасть диагонали РЕ. Точка Н делит РА попалам => МН - медиана в равнобедренном РАМ (РА=МА по условию) является и высотой и биссектрисой => МК перпендикулярна РА => КН медиана я вляющаяся и высотой в РКА => РК=КА Аналогично доказывается с диагонолью РЕ: РЕ перпендикулярно КА, РК=РА Имеем Равносторонний РКА (РА=РК=КА) => РН=НА=АС=КС=РВ=КВ Пусть РМН=АМН=х(т к МН - биссектриса) По свойствам трапеции: 180=Р+М=2х+60+МРА (АРК=60 т к РКА - равносторонний) МРА=90-х(по теореме об острых углах прямоуг. треугольника) 2х+90-х+60=180 х=30 (Аналогично с углами К и Е: СЕК=СЕА=30)
РМН=30 РН=sin30*РМ=sin30*a=a/2 Тогда РН=НА=АС=КС=РВ=КВ=а/2 Тогда основание меньшее РК=РВ+КВ=а
Рассмотрим треугольники СЕА и МНА НА=АС СЕА=30=АМН То есть СЕА=МНА => АЕ=МА=а КЕ=АЕ=а ТОгда большее основание МЕ=МА+АЕ=2а Теперь осталось найти высоту трапеции Приведем ее РН1 В треугольнике РМН1 РН1=РМ=РМ*sin60= 0.866а И наконец S=((A+B)/2)*h=(a+2a)/2 * 0.866а=0.14433а ответ 0.14433а
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм. Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти. Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника. Дерзайте с вычислениями!
Рассмотрим диагональ трапеции МК и медиану треугольника РАК - КН . Диагональ проходит точку К и точку пересечения медиан, медиана также проходит точку К и точку пересечения медиан, значит медиана КС честь диагонали МК. Аналогично доказывается, что медиана РН - чеасть диагонали РЕ.
Точка Н делит РА попалам => МН - медиана в равнобедренном РАМ (РА=МА по условию) является и высотой и биссектрисой => МК перпендикулярна РА => КН медиана я вляющаяся и высотой в РКА => РК=КА
Аналогично доказывается с диагонолью РЕ:
РЕ перпендикулярно КА, РК=РА
Имеем Равносторонний РКА (РА=РК=КА) => РН=НА=АС=КС=РВ=КВ
Пусть РМН=АМН=х(т к МН - биссектриса)
По свойствам трапеции:
180=Р+М=2х+60+МРА (АРК=60 т к РКА - равносторонний)
МРА=90-х(по теореме об острых углах прямоуг. треугольника)
2х+90-х+60=180
х=30
(Аналогично с углами К и Е: СЕК=СЕА=30)
РМН=30
РН=sin30*РМ=sin30*a=a/2 Тогда
РН=НА=АС=КС=РВ=КВ=а/2
Тогда основание меньшее РК=РВ+КВ=а
Рассмотрим треугольники
СЕА и МНА
НА=АС
СЕА=30=АМН
То есть СЕА=МНА => АЕ=МА=а
КЕ=АЕ=а
ТОгда большее основание
МЕ=МА+АЕ=2а
Теперь осталось найти высоту трапеции
Приведем ее РН1
В треугольнике РМН1
РН1=РМ=РМ*sin60= 0.866а
И наконец
S=((A+B)/2)*h=(a+2a)/2 * 0.866а=0.14433а
ответ 0.14433а
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!