В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ElDiablo1337
ElDiablo1337
16.05.2021 11:42 •  Геометрия

Около четырехугольника abcd можно описать окружность. точка p – основание перпендикуляра, опущенного из точки а на прямую вс, q – из а на dc, r – из d на ав и т – из d на вс. докажите, что точки p, q, r и t лежат на одной окружности. если можно, то и с чертежом.

Показать ответ
Ответ:
torivova2004
torivova2004
07.10.2020 07:24

 Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому  ∠RQD = ∠DAR.  Также, поскольку четырёхугольник ABCD  – вписанный, то  ∠BCD = 180° – ∠DAR.  Cледовательно,  ∠RQD + ∠BCD = 180°,  то есть прямые PT и RQ параллельны.

  Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому 
PQ = AC·sin∠BCD.  Aналогично,  RT = BD·sin∠ABC.  Но из вписанности четырёхугольника ABCD следует, что 
   Значит,  PQ = RT,  то есть трапеция – равнобокая.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота