редняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
средняя линия треугольника
Доказательство.
Пусть дан Δ ABC и его средняя линия ED. Проведем прямую параллельную стороне AB через точку D. По теореме Фалеса она пересекает отрезок AC в его середине, т.е. совпадает с DE. Значит, средняя линия параллельна AB. Проведем теперь среднюю линию DF. Она параллельна стороне AC. Четырехугольник AEDF – параллелограмм. По свойству параллелограмма ED=AF, а так как AF=FB по теореме Фалеса, то ED = ? AB. Теорема доказана.
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.
редняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
средняя линия треугольника
Доказательство.
Пусть дан Δ ABC и его средняя линия ED.
Проведем прямую параллельную стороне AB через точку D. По теореме Фалеса она пересекает отрезок AC в его середине, т.е. совпадает с DE. Значит, средняя линия параллельна AB.
Проведем теперь среднюю линию DF. Она параллельна стороне AC. Четырехугольник AEDF – параллелограмм. По свойству параллелограмма ED=AF, а так как AF=FB по теореме Фалеса, то ED = ? AB. Теорема доказана.
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.