Около правильного треугольника со стороной 4 см, описана окружность. найдите а) радиус описанной окружности б) сторону правильного шестиугольника вписанного в эту окружность
Да, эти треугольники равны, так как 3 стороны одного треугольника (30 см, 40 см и 0,5 м = 50 см) равны 3 сторонам другого треугольника (з дм = 30 см, 4 дм = 40 см, 5 дм = 50 см).
Третий признак равенства треугольников (по трем сторонам) :
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Задание 2.
а) согласно определению равными называются такие треугольники, которые можно совместить наложением; в этом определении ничего не говорится ни о длинах сторон, ни об углах; хотя понятно, что не совместишь треугольники, если у них длины сторон разные; но получается, что в этом случае ничего искать не надо; выходит, ни одной;
б) первый признак равенства треугольников (по двум сторонам и углу между ними) :
если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны;
значит, по первому признаку надо найти 2 пары равных сторон;
в) второй признак равенства треугольников (по стороне и двум прилежащим углам) :
если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны;
значит, по второму признаку надо найти 1 пару равных сторон;
г) третий признак равенства треугольников (по трем сторонам):
если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны;
значит, по третьему признаку надо найти 3 пары равных сторон.
Задание № 3.
АС = РТ, т.к. это третьи стороны обоих треугольников.
А согласно третьему признаку равенства треугольников, три стороны одного треугольника должны быть равны трём сторонам другого треугольника.
Задание № 4.
Дано:
1. Сторона АВ треугольника АВС равна стороне АМ треугольника АМС.
2. Сторона ВС треугольника АВС равна стороне МС треугольника АМС.
3. Сторона АС - общая.
Доказать равенство треугольников АВС и АМС.
Доказательство.
1) сторона АВ треугольника АВС равна стороне АМ треугольника АМС - согласно условию задачи;
2) сторона ВС треугольника АВС равна стороне МС треугольника АМС - согласно условию задачи;
3) сторона АС треугольника АВС равна стороне АС треугольника АМС - так как данная сторона является общей.
Согласно третьему признаку равенства треугольников: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Так как 3 стороны треугольника АВС равны трём сторонам треугольника АМС, то ΔАВС = Δ АМС, -
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
См. Объяснение.
Объяснение:
Задание 1.
Да, эти треугольники равны, так как 3 стороны одного треугольника (30 см, 40 см и 0,5 м = 50 см) равны 3 сторонам другого треугольника (з дм = 30 см, 4 дм = 40 см, 5 дм = 50 см).
Третий признак равенства треугольников (по трем сторонам) :
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Задание 2.
а) согласно определению равными называются такие треугольники, которые можно совместить наложением; в этом определении ничего не говорится ни о длинах сторон, ни об углах; хотя понятно, что не совместишь треугольники, если у них длины сторон разные; но получается, что в этом случае ничего искать не надо; выходит, ни одной;
б) первый признак равенства треугольников (по двум сторонам и углу между ними) :
если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны;
значит, по первому признаку надо найти 2 пары равных сторон;
в) второй признак равенства треугольников (по стороне и двум прилежащим углам) :
если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны;
значит, по второму признаку надо найти 1 пару равных сторон;
г) третий признак равенства треугольников (по трем сторонам):
если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны;
значит, по третьему признаку надо найти 3 пары равных сторон.
Задание № 3.
АС = РТ, т.к. это третьи стороны обоих треугольников.
А согласно третьему признаку равенства треугольников, три стороны одного треугольника должны быть равны трём сторонам другого треугольника.
Задание № 4.
Дано:
1. Сторона АВ треугольника АВС равна стороне АМ треугольника АМС.
2. Сторона ВС треугольника АВС равна стороне МС треугольника АМС.
3. Сторона АС - общая.
Доказать равенство треугольников АВС и АМС.
Доказательство.
1) сторона АВ треугольника АВС равна стороне АМ треугольника АМС - согласно условию задачи;
2) сторона ВС треугольника АВС равна стороне МС треугольника АМС - согласно условию задачи;
3) сторона АС треугольника АВС равна стороне АС треугольника АМС - так как данная сторона является общей.
Согласно третьему признаку равенства треугольников: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Так как 3 стороны треугольника АВС равны трём сторонам треугольника АМС, то ΔАВС = Δ АМС, -
что и требовалось доказать.
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).