1. Сторона прямоугольника равна 5 см, а диагональ - 13 см. Найдите площадь прямоугольника:
Сторона по теореме Пифагора равна √13² - 5² = 12 см. Площадь равна 12 см•5см = 60 см.
2. Периметр равнобедренного треугольника равен 32 см, а основание его на 2 см больше боковой стороны. Найдите площадь треугольника:
За х обозначим боковую сторону. Получаем уравнение: х + х + 2 + х = 32 х = 10 Затем нужно провести высоту на основание. Она будет медианой. По теореме Пифагора её длина равна √10² - 6² = 8 см. Площадь треугольника равна 1/2•12 см•8 см = 48 см.
3. Найдите стороны между меньшими сторонами сторонами треугольника, если стороны треугольника относятся как 9:14:15.
Обозначим за х одну часть. По обратной теореме Пифагора, если выполняется равенство a² + b² = c² (81x² + 144x² = 225x²). Значит, угол межлв меньшими сторонами равен 90°.
4. Периметр прямоугольного треугольника равен 12 см, а его гипотенуза на 2 больше меньшего катета. Найдите стороны этого треугольника: Составим систему, обозначив за а и b катеты, за с - гипотенузу. a + b + c = 12 a + 2 = c a² + b² = c²
a = 3 b = 4 c = 5
5. Стороны прямоугольного треугольника выражаются целыми числами. Площадь квадрата со стороной, равной гипотерузе этого прямоугольного треугольника, относится к площади треугольника как 25/6. Докажите, что данный треугольник является Египетским треугольником.
Наименьшая площадь квадрата равна 25. Тогда его сторона равна 5. Наименьшая площадь треугольника равна 6. 1/2ab = 6 a² + b² = 5
a = 3 b = 4 Значит, треугольник является Египетским, т.а. его стороны относятся как 3:4:5.
1.
Половина диагонали по т. Пифагора
d² = 3²+4² = 5²
d = 5 - половина диагонали.
Ребро - с= 13, катет - d - 5
h² = 13² - 5² = 169 - 25 = 144 = 12²
h = 12 - высота - ОТВЕТ
2.
ДАНО
S = d1*d2/2 = 15 - площадь основания.
Диагонали - d1, d2, h - высота.
Площади сечений
1) d1 *h = 20
2) d2 * h= 24
3) d1 * d2 = 2* S = 30
Умножаем 1) и 2)
4) d1*d2*h² = 20*24 = 480 = 30*h²
5) h² = 480:30 = 16, h = √16 = 4
Из 1) и 2)
6) d1 = 20:4 = 5 - малая диагональ ОТВЕТ
7) d2 = 24:4 = 6 - большая диагональ -ОТВЕТ
3.
Рисунок -в приложении.
a = h : sin 30 = 8 : 0.5 = 16 - ребро - ОТВЕТ
Сторона по теореме Пифагора равна √13² - 5² = 12 см.
Площадь равна 12 см•5см = 60 см.
2. Периметр равнобедренного треугольника равен 32 см, а основание его на 2 см больше боковой стороны. Найдите площадь треугольника:
За х обозначим боковую сторону. Получаем уравнение:
х + х + 2 + х = 32
х = 10
Затем нужно провести высоту на основание. Она будет медианой. По теореме Пифагора её длина равна √10² - 6² = 8 см.
Площадь треугольника равна 1/2•12 см•8 см = 48 см.
3. Найдите стороны между меньшими сторонами сторонами треугольника, если стороны треугольника относятся как 9:14:15.
Обозначим за х одну часть. По обратной теореме Пифагора, если выполняется равенство a² + b² = c² (81x² + 144x² = 225x²). Значит, угол межлв меньшими сторонами равен 90°.
4. Периметр прямоугольного треугольника равен 12 см, а его гипотенуза на 2 больше меньшего катета. Найдите стороны этого треугольника:
Составим систему, обозначив за а и b катеты, за с - гипотенузу.
a + b + c = 12
a + 2 = c
a² + b² = c²
a = 3
b = 4
c = 5
5. Стороны прямоугольного треугольника выражаются целыми числами. Площадь квадрата со стороной, равной гипотерузе этого прямоугольного треугольника, относится к площади треугольника как 25/6.
Докажите, что данный треугольник является Египетским треугольником.
Наименьшая площадь квадрата равна 25. Тогда его сторона равна 5. Наименьшая площадь треугольника равна 6.
1/2ab = 6
a² + b² = 5
a = 3
b = 4
Значит, треугольник является Египетским, т.а. его стороны относятся как 3:4:5.