Около равнобедренного треугольника ABC с основанием AC описана окружность. На дуге AB, не содержащей точки C, отмечена произвольная точка D. Пусть точка Е симметрична точке C относительно прямой BD. Докажите, что точки A, D и Е лежат на одной прямой.
KA = KB = KC = KD = 13
Объяснение:
Из прямоугольного треугольника АВС находим АС по теореме Пифагора:
АС = √(АВ² + ВС²) = √(36 + 64) = 10
Диагонали прямоугольника равны и точкой пересечения делятся пополам:
АО = ВО = СО = DO = 5
АО, ВО, СО и DO - проекции наклонных KA, KB, KC и KD на плоскость прямоугольника.
Если равны проекции наклонных, проведенных из одной точки, то равны и сами наклонные, т.е.
KA = KB = KC = KD.
Из прямоугольного треугольника АОК по теореме Пифагора находим КА:
КА = √(ОК² + АО²) = √(12² + 5²) = √(144 + 25) = √169 = 13
KA = KB = KC = KD = 13
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10
КД=10-6=4.
Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА
ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10
ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52
решаем уравнение х=6,КР=10+6=16