В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ogannisyan2006
ogannisyan2006
11.02.2021 23:48 •  Геометрия

Около равнобедренного треугольника авс (ав=вс) описана окржность радиуса r. средняя линия, проведенная параллельно ас, пересекает окружность в точках e и д. найдите отношение площади треугольника авс к площади треугольника евд, если угол авс = 120

Показать ответ
Ответ:
katiatrush86
katiatrush86
02.10.2020 12:41
Пусть О - центр окружности, BH - высота треугольника ABC и BK - высота треугольника EBD. Тогда
AC=2R\sqrt{3}/2=R\sqrt{3}.
ED=2R\sin\angle EOK=2R\sqrt{1-\cos^2\angle EOK}=2R\sqrt{1-(3/4)^2}=\frac{R\sqrt{7}}{2}, т.к. \cos \angle EOK=(OH+HK)/R=(R/2+R/4)/R=3/4.
Значит AC/ED=\frac{2\sqrt{3}}{\sqrt{7}}. Поэтому
S_{ABC}/S_{EBD}=(BH\cdot AC)/(BK\cdot ED)=2\cdot2\sqrt{3}/\sqrt{7}=4\sqrt{3}/\sqrt{7}
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота