Периметр P правильного треугольника равен 36 см, а расстояние от некоторой точки до каждой из сторон треугольника 10см. Найдите расстояние от этой точки до плоскости треугольника.
Из заданной точки опускаем перпендикуляр h к плоскости треугольника. h - расстояние от этой точки до плоскости треугольника. Так как заданная точка равноудалена от каждой стороны треугольника, то и каждая точка перпендикуляра h тоже равноудалена от каждой стороны треугольника. На плоскости треугольника точка, равноудаленная от каждой сторон - это центр вписанной окружности. Радиус вписанной окружности r правильного треугольника r = P / 6√3 h находим по теореме Пифагора h = √( 10² - r² ) h = √( 10² - (P / 6√3)² ) h = √( 10² - (36 / 6√3)² ) = 2 √22 ( ≈ 9.38 ) см
Здесь главное сделать правильный чертеж, остальное уже просто.
Так как высота проведена к продолжению АD, она находится вне ромба.
ВМ - высота, перпендикулярна МD.
ВС и АD параллельны как стороны параллелограмма, ⇒
ВМ перпендикулярна ВС, угол МВС=90º
Угол МВА=30ª, тогда угол СВА=90º-30º=60º. Т.к. стороны ромба равны, треугольник АВС - равнобедренный. Углы при основании АС=(180º-60º):2=60º⇒
ΔАВС - равносторонний.
Тогда АВ=АС=6 см.
В прямоугольном треугольнике АМВ углу МВА противолежит катет МА.
Катет, противолежащий углу 30º, равен половине гипотенузы.
АМ=АВ:2=3 см
Из заданной точки опускаем перпендикуляр h к плоскости треугольника. h - расстояние от этой точки до плоскости треугольника. Так как заданная точка равноудалена от каждой стороны треугольника, то и каждая точка перпендикуляра h тоже равноудалена от каждой стороны треугольника.
На плоскости треугольника точка, равноудаленная от каждой сторон - это центр вписанной окружности.
Радиус вписанной окружности r правильного треугольника
r = P / 6√3
h находим по теореме Пифагора
h = √( 10² - r² )
h = √( 10² - (P / 6√3)² )
h = √( 10² - (36 / 6√3)² ) = 2 √22 ( ≈ 9.38 ) см