Когда грани пирамиды равнонаклонены к основанию, то 1) в основание можно вписать окружность (для треугольника это всегда можно сделать, но тут речь идет о любом многоугольнике в основании) 2) вершина пирамиды проектируется в центр вписанной в основание окружности 3) все апофемы (высоты боковых граней) равны между собой и их проекции на основание равны радиусу вписанной в основание окружности. Все это легко увидеть, если заметить, что апофемы вместе с их проекциями на основание и высотой пирамиды образуют равные прямоугольные треугольники. (Они все имеют общий катет - высоту пирамиды, и равные острые углы - поскольку грани имеют равный наклон). Радиус вписанной в основание окружности r = (5 + 12 - 13)/2 = 2; Отсюда апофема равна 6 (потому что 2^2 + (4√2)^2 = 36) далее можно двумя 1) Sбок = (5 + 12 + 13)*6/2 = 90; 2) Sбок = Sосн/cos(Ф); Sосн = 5*12/2 = 30; cos(Ф) = 2/6 = 1/3; Ф - угол наклона боковой грани. И снова получается 90 :) удивительно...
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Доказательство: Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с. Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке. Внутри получим квадрат со стороной с. Площадь большого квадрата равна сумме площадей составляющих его фигур: S = 4·SΔ + c² = 4 · ab/2 + c² или S = (a + b)² Приравняем правые части: 2ab + c² = (a + b)² 2ab + c² = a² + b² + 2ab c² = a² + b² Что и требовалось доказать.
1) в основание можно вписать окружность (для треугольника это всегда можно сделать, но тут речь идет о любом многоугольнике в основании)
2) вершина пирамиды проектируется в центр вписанной в основание окружности
3) все апофемы (высоты боковых граней) равны между собой и их проекции на основание равны радиусу вписанной в основание окружности.
Все это легко увидеть, если заметить, что апофемы вместе с их проекциями на основание и высотой пирамиды образуют равные прямоугольные треугольники. (Они все имеют общий катет - высоту пирамиды, и равные острые углы - поскольку грани имеют равный наклон).
Радиус вписанной в основание окружности r = (5 + 12 - 13)/2 = 2;
Отсюда апофема равна 6 (потому что 2^2 + (4√2)^2 = 36)
далее можно двумя
1) Sбок = (5 + 12 + 13)*6/2 = 90;
2) Sбок = Sосн/cos(Ф); Sосн = 5*12/2 = 30; cos(Ф) = 2/6 = 1/3; Ф - угол наклона боковой грани. И снова получается 90 :) удивительно...
Доказательство:
Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с.
Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке.
Внутри получим квадрат со стороной с.
Площадь большого квадрата равна сумме площадей составляющих его фигур:
S = 4·SΔ + c² = 4 · ab/2 + c²
или
S = (a + b)²
Приравняем правые части:
2ab + c² = (a + b)²
2ab + c² = a² + b² + 2ab
c² = a² + b²
Что и требовалось доказать.