Итак, диагонали в прямоугольнике точкой пересечения делятся пополам, и образуют два попарно равных равнобедренных треугольника, неважно, какой из них мы будем рассматривать, важно то что точка пересечения это вершина любого из этих четырех равнобедренных треугольников, а по условию сказано, что прямая проведена из точки пересечения к середине стороны, а сторона это основание равнобедренного треугольника, а отрезок проведенный из вершины к середине основания, это медиана, а в равнобедренном треугольнике медиана является биссектрисой и высотой, а высота перпендикулярна основанию. :) НЕ ЗАБУДЬ ДОБАВИТЬ В ЛУЧШЕЕ)
Три прямые, пересекающиеся попарно, образуют три точки пересечения.
а) Через три точки, не лежащие на одной прямой, можно провести плоскость, притом только одну.
Следовательно, любая прямая, пересекающая прямые a и b,
но не проходящие через точку С, будет лежать в той же плоскости, что прямые а и b. ------- б) Через две пересекающиеся прямые можно провести плоскость, притом только одну. ⇒ Прямые а и b лежат в одной плоскости. Две точки любой прямой, пересекающей прямые а и b, лежат на прямых а и b, т.е. в той же плоскости. Следовательно, вся такая прямая лежит в той же плоскости.
Три прямые, пересекающиеся попарно, образуют три точки пересечения.
а) Через три точки, не лежащие на одной прямой, можно провести плоскость, притом только одну.
Следовательно, любая прямая, пересекающая прямые a и b,
но не проходящие через точку С, будет лежать в той же плоскости, что прямые а и b.-------
б) Через две пересекающиеся прямые можно провести плоскость, притом только одну. ⇒ Прямые а и b лежат в одной плоскости.
Две точки любой прямой, пересекающей прямые а и b, лежат на прямых а и b, т.е. в той же плоскости. Следовательно, вся такая прямая лежит в той же плоскости.