Окружность с центром о вписанная в равнобедренный треугольник авс с основанием ас касается стороны вс в точке к, причем ск: кв=5: 8.найдите длину отрезка во если площадь треугольника равна 540
Центр О вписанной в треугольник окружности является точкой пересечения его биссектрис. Т.к. в равнобедренном треугольнике биссектриса ВН, проведенная к основанию, совпадает с медианой и высотой, то центр О вписанной в равнобедренный ΔАВС окружности лежит на высоте и медиане ВН, проведенных к основанию. Значит угол ВНС - прямой и АН=СН. По условию СК/КВ=5/8, значит СК=5х, КВ=8х, ВС=СК+КВ=13х По свойству касательных, проведенных из одной точки к окружности СК=СН=5х, тогда АС=2*5х=10х Из прямоугольного ΔВНС найдем ВН=√(ВС²-СН²)=√(13х)²-(5х)²=√144х²=12х Площадь Sавс=ВН*АС/2 540=12х*10х/2 х=√9=3 СК=5*3=15 КВ=8*3=24 АВ=ВС=13*3=39 АС=10*3=30 Полупериметр р=(2АВ+АС)/2=(2*39+30)2=54 Радиус ОК=Sавс/p=540/54=10 Из прямоугольного ΔВОК найдем ВО: ВО=√(КВ²+ОК²)=√24²+10²=√676=26
По условию СК/КВ=5/8, значит СК=5х, КВ=8х, ВС=СК+КВ=13х
По свойству касательных, проведенных из одной точки к окружности СК=СН=5х, тогда АС=2*5х=10х
Из прямоугольного ΔВНС найдем ВН=√(ВС²-СН²)=√(13х)²-(5х)²=√144х²=12х
Площадь Sавс=ВН*АС/2
540=12х*10х/2
х=√9=3
СК=5*3=15
КВ=8*3=24
АВ=ВС=13*3=39
АС=10*3=30
Полупериметр р=(2АВ+АС)/2=(2*39+30)2=54
Радиус ОК=Sавс/p=540/54=10
Из прямоугольного ΔВОК найдем ВО:
ВО=√(КВ²+ОК²)=√24²+10²=√676=26