Окружность с центром в начале координат проходит через точку a(8; 6) и пересекает ось абсцисса в точках b и c 1)запишите уравнение этой окружности 2)найдите площадь треугольника abc
В равнобедренном треугольнике действительно равны углы при основании. Это утверждение верно.
ответ: утверждение 1 верно.
Медианы треугольника пересекаются в одной точке - в центроиде (в центре тяжести треугольника). Она является одной из замечательных точек треугольника. Это утверждение верно.
ответ: утверждение 2 верно.
Медиана произвольного равнобедренного треугольника, проведённая к ОСНОВАНИЮ, а не к боковой стороне, является его биссектрисой и высотой. Это утверждение неверно.
ответ: утверждение 3 неверно.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. Это один из признаков равенства треугольников. Это утверждение верно.
Объяснение:
Проанализируем каждое утверждение.
В равнобедренном треугольнике действительно равны углы при основании. Это утверждение верно.
ответ: утверждение 1 верно.
Медианы треугольника пересекаются в одной точке - в центроиде (в центре тяжести треугольника). Она является одной из замечательных точек треугольника. Это утверждение верно.
ответ: утверждение 2 верно.
Медиана произвольного равнобедренного треугольника, проведённая к ОСНОВАНИЮ, а не к боковой стороне, является его биссектрисой и высотой. Это утверждение неверно.
ответ: утверждение 3 неверно.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. Это один из признаков равенства треугольников. Это утверждение верно.
ответ: утверждение 4 верно.
ответ:1.
По теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos∠B
64 = 36 + 49 - 2·6·7·cos∠B
cos∠B = (36 + 49 - 64) / (2 · 6 · 7) = 21 / (2 · 6 · 7) = 1/4
Основное тригонометрическое тождество:
sin²∠B + cos²∠B = 1
sin∠B = √(1 - cos²∠B) = √(1 - 1/16) = √15/4
2.
СН - высота, проведенная к боковой стороне.
∠ВСН - искомый.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = 35°
∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
ΔНВС: ∠ВНС = 90°, ∠НВС = 70°, ⇒ ∠ВСН = 20°