Окружность с центром в начале координат проходит через точку a(8; 6) и пересекает ось абсцисса в точках b и c 1)запишите уравнение этой окружности 2)найдите площадь треугольника abc
У куба все грани квадраты. Диагонали квадрата равны и точкой пересечения делятся пополам.
Пусть О - точка пересечения диагоналей грани ABCD.
В треугольнике АВ₁С проведем отрезок ТО.
ТО - средняя линия треугольника АВ₁С, значит ТО ║ АВ₁,
т.е. ТО - это отрезок прямой k, проходящей через точку Т параллельно прямой АВ₁, расположенный внутри куба.
АВ₁ = 2ТО = 2 · 4 = 8 см по свойству средней линии.
Площадь квадрата можно найти как половину квадрата его диагонали (квадрат - ромб с равными диагоналями, а площадь ромба равна половине произведения его диагоналей):
известна диагональ параллелепипеда ac1 dd1-ребро или высота параллелепипеда bc-дина основания надо найти ba-ширину основания.
если провести ac-диагональ основания то получим треугольник acc1 прямоугольный тк как боковые ребра перпендикулярны основаниям в нем известна cc1=dd1=5 и ac1=√38
отсюда по теореме Пифагора находим ac=√38-25=√13. ac является диагональю основания, которое есть прямоугольник. тогда треугольник abc -прямоугольный в уотором известна гипотенуза ac=√13 и катет bc=3 тогда ba=√(13-9)=2
ответ: 192 см²
Объяснение:
У куба все грани квадраты. Диагонали квадрата равны и точкой пересечения делятся пополам.
Пусть О - точка пересечения диагоналей грани ABCD.
В треугольнике АВ₁С проведем отрезок ТО.
ТО - средняя линия треугольника АВ₁С, значит ТО ║ АВ₁,
т.е. ТО - это отрезок прямой k, проходящей через точку Т параллельно прямой АВ₁, расположенный внутри куба.
АВ₁ = 2ТО = 2 · 4 = 8 см по свойству средней линии.
Площадь квадрата можно найти как половину квадрата его диагонали (квадрат - ромб с равными диагоналями, а площадь ромба равна половине произведения его диагоналей):
Saa₁b₁b = 1/2 AB₁² = 1/2 · 64 = 32 см²
Площадь поверхности куба:
Sпов = 6 · Saa₁b₁b = 6 · 32 = 192 см²
Блин, не могу вложить
известна диагональ параллелепипеда ac1 dd1-ребро или высота параллелепипеда bc-дина основания надо найти ba-ширину основания.
если провести ac-диагональ основания то получим треугольник acc1 прямоугольный тк как боковые ребра перпендикулярны основаниям в нем известна cc1=dd1=5 и ac1=√38
отсюда по теореме Пифагора находим ac=√38-25=√13. ac является диагональю основания, которое есть прямоугольник. тогда треугольник abc -прямоугольный в уотором известна гипотенуза ac=√13 и катет bc=3 тогда ba=√(13-9)=2