окружность с радиусом 4 корня из 3, описана около правильного шестиугольника ABCDEF. Найти площадь треугольника ABC. Запишите в поле ответа значение, поделенное на корень из 3
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
1 ЗАДАЧА:
Скорость 1-го х .. Через 5 часов остался путь 176-5х .. Время в пути (176-5х)/х
Скорость 2-го х+5 Проезжает путь 176 . _ _Время в пути 176/(х+5)
176-5х = 176
_х _..___х+5
(176-5х)(х+5) = 176х
176х - 5х2 + 176 ∙ 5 - 25х = 176х
5х2 + 25х - 176 ∙ 5 = 0 Делим на 5
х2 + 5х - 176 = 0
D = 52 - 4 ∙ 1 ∙ (-176) = 25 + 704 = 729 = 272
x1 = (-5-27)/2 < 0 не удовлетворяет условию задачи, количество деталей не может быть отрицательным
x2 = (-5+27)/2 = 22/2 = 11
Скорость второго на 5 больше
11+5 = 16
2 ЗАДАЧА:
Первый в час делает х+4 деталей 33 деталей сделает за 33/(х+4) часов
Второй в час делает х деталей 77 деталей делает за 77/х
Разность 77/х - 33/(х+4) = 8
77 ___- __33__=_8
х _.___.__.х+4
77(х+4) - 33х = 8х(х+4)
77х + 308 - 33х = 8х2 + 32х
8х2 + 32х - 77х + 33х - 308 = 0
8х2 - 12х - 308 = 0 Разделим на 4
2х2 - 3х - 77 = 0
D = 32 - 4∙ 2 ∙(- 77) = 9 + 616 = 625 = 252
x1 = (3-25)/4 < 0 не удовлетворяет условию задачи, количество деталей не может быть отрицательным
x2 = (3+25)/4 = 28/4 = 7
3 ЗАДАЧА:
Пусть знаменатель равен х, тогда числитель равен х-4.
Если к числителю прибавить 19, то получим выражение х-4+19=х+15, а знаменатель будет х+28.
Дробь (х+15)/(х+28)больше прежней на 1/5.
Составляем уравнение: (х-4)/х+1/5=(х+15)/(х+28).
Приведем все к общему знаменателю и перенесем в одну сторону, у х-20+х)/(5х)=(х+15)/(х+28);
(6х-20)(х+28)=5х(х+15)
6х^2-5х^2-20х+168х-75х-560=0
Получим уравненеие х^2+73х-560=0. Решим и получим х1=-80 (посторонний корень, т.к знаменатель не может быть отрицательным числом) и х2=7.
Эта дробь (7-4)/7=3/7.
проверка: (3+19)/(7+28)-3/7=(22-15)/35=7/35=1/5
Объяснение:Как то так