Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).
В ΔАВС:АС=2*2=4(см)(гипотенуза=удвоенному катету,лежащему напротив
угла 30 градусов)
ВС²=АС²-АВ² ⇒ВС=√4²-2²=2√3(см).
Sосн=1/2*АВ*СВ=1/2*2*2√3=2√3(см²).
Sбок=Р*Н=(2+4+2√3)*2√3=12√3+12=12(√3 +1)(см²).
1) Sполн=2Sосн+Sбок=2*2√3+12(√3 +1)=4√3+12√3+12=16√3+12(см²).
2) ПлоскостьА1ВC-тр-к,уголА1ВС=90 градусов(теорема о трех перпендикулярах)
SΔ=1/2А1В*ВС; из ΔА1АВ найдем A1B : A1B²=АА1²+АВ²;
A1B=√(2√3)²+2²=√12+4=√16=4(см).
SΔА1ВС=1/2*4*2√3=4√3(см²).
3) Двугранный угол между плоскостямиА1ВС иАВС лежит в плоскости,перпендикулярной ВС.(плоскостьАА1В1В) это уголА1ВА.=α
tgα=2√3/2=√3 ⇒α=60 градусов.
4) СС1 параллельнаВВ1.гол между прямой плоскостью ищем в плоскостиАА1ВВ1,1ВС.Это уголА1ВВ1.
уголА1ВВ1.=90-α=90-60=30(градусов).
5) АВ1 лежит в плоскости,перпендикулярной А1ВС.(По теореме о трех перпендику
лярах),значит,и плоскость перпендикулярна А1ВС.