Окружность, вписанная в треугольник LMN, точками касания с треугольником делится на дуги, градусные меры которых равны: ∪AB= 106° и ∪BC= 116°. Вычисли углы треугольника и градусную меру дуги CA. ∢ L= ∢ M= ∢ N= ∪ CA=
Если диагональ квадрата равна 12, то сторона квадрата a = 13/√2 ≈ 9,19 меньше диаметра цилиндра, равного d = 6*2 = 12. И возможны два варианта размещения квадрата в цилиндре - а) тривиальный. Квадрат вертикален, его плоскость параллельна оси цилиндра. Высота цилиндра равна стороне квадрата, h = 13/√2 б) наклонный, центр квадрата совпадает с центром цилиндра На рисунке проекция квадрата на основание - синяя b - проекция наклонной стороны квадрата на плоскость основания По Пифагору: a² + b² = d² b² = 12²- (13/√2)² = 12² - 13²/2 = 144 - 169/2 = 119/2 b = √(119/2) И теперь ещё раз по теореме Пифагора, но уже для вертикально расположенного прямоугольного треугольника h² + b² = a² h² = a² - b² = (13/√2)² - (√(119/2))² = 169/2 - 119/2 = 50/2 = 25 h = √25 = 5 И это ответ :)
a = 13/√2 ≈ 9,19
меньше диаметра цилиндра, равного
d = 6*2 = 12.
И возможны два варианта размещения квадрата в цилиндре -
а) тривиальный. Квадрат вертикален, его плоскость параллельна оси цилиндра. Высота цилиндра равна стороне квадрата,
h = 13/√2
б) наклонный, центр квадрата совпадает с центром цилиндра
На рисунке проекция квадрата на основание - синяя
b - проекция наклонной стороны квадрата на плоскость основания
По Пифагору:
a² + b² = d²
b² = 12²- (13/√2)² = 12² - 13²/2 = 144 - 169/2 = 119/2
b = √(119/2)
И теперь ещё раз по теореме Пифагора, но уже для вертикально расположенного прямоугольного треугольника
h² + b² = a²
h² = a² - b² = (13/√2)² - (√(119/2))² = 169/2 - 119/2 = 50/2 = 25
h = √25 = 5
И это ответ :)
Объяснение:
Геометрическая фигура, образованная тремя пересекающимися прямыми, образующими три внутренних угла, а также всякий предмет, устройство такой формы.
Треугольники бывают по углам:
Если все углы треугольника острые, то треугольник называется остроугольным;
Если один из углов треугольника тупой (больше ), то треугольник называется тупоугольным;
Если один из углов треугольника прямой (равен ), то треугольник называется прямоугольным.
По сторонам:
Треугольник называется равнобедренным, если у него две стороны равны.
Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.
Треугольник, у которого все стороны равны, называется равносторонним или правильным.
Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°.
Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.
Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.