Получилось, что в плоскости γ через точку А к прямой b проведены две различные параллельные прямые а и с, что противоречит аксиоме. Значит предположение неверно и c пересекает β.
Объяснение:
Допустим плоскости α и β параллельны, а прямая с пересекает плоскость α в точке А.
Предположим, что эта прямая не пересекается с плоскостью β. Возьмем в плоскости β точку В и проведем плоскость γ через прямую с и точку В. Плоскость γ пересекается с плоскостями α и β по параллельным прямым а и b (теорема 17.6). Но по предположению, прямая с параллельна плоскости β, а поэтому прямая с параллельна и прямой b (теорема, обратная теореме 17.3).
Получилось, что в плоскости γ через точку А к прямой b проведены две различные параллельные прямые а и с, что противоречит аксиоме. Значит предположение неверно и c пересекает β.
Объяснение:
Допустим плоскости α и β параллельны, а прямая с пересекает плоскость α в точке А.
Предположим, что эта прямая не пересекается с плоскостью β. Возьмем в плоскости β точку В и проведем плоскость γ через прямую с и точку В. Плоскость γ пересекается с плоскостями α и β по параллельным прямым а и b (теорема 17.6). Но по предположению, прямая с параллельна плоскости β, а поэтому прямая с параллельна и прямой b (теорема, обратная теореме 17.3).
S=0.5*BC*AC
2) Биссектриса треугольника делит третью сторону на отрезки, пропорциональные двум другим сторонам:
frac{AC}{AK}= frac{CB}{BK}
frac{AC}{3}= frac{CB}{4}
AC= frac{3}{4}*CB
3) По теореме Пифагора:
AC^{2}+BC^{2}=AB^{2}
AB=3+4=7
(frac{3}{4}*BC)^{2}+BC^{2}=49
frac{9}{16}*BC^{2}+BC^{2}=49
frac{25}{16}*BC^{2}=49
BC^{2}=frac{49*16}{25}
BC>0
BC= sqrt{frac{49*16}{25}}=frac{7*4}{5}=frac{28}{5}=5frac{3}{5}=5.6
AC= frac{3}{4}* frac{28}{5}=frac{21}{5}=4.2
4) S=frac{1}{2}*frac{21}{5}*frac{27}{5}=frac{21*27}{50}=frac{567}{50}=11.34 - ответ