Примем т.О - центр данной окружности, АВ - хорда.
Расстояние до хорды - это перпендикуляр из центра окружности к хорде.
Пусть ОК - искомый перпендикуляр, тогда по свойству хорды окружности т.К - середина хорды, следовательно АК=18/2=9(см).
Рассмотрим треугольник АОК:
угол ОКА - прямой, ОА=r=15см, АК=9см.
по теореме Пифагора находим ОК=кв.корень(АО^2-AK^2)=12(см)
ответ: 12см
Примем т.О - центр данной окружности, АВ - хорда.
Расстояние до хорды - это перпендикуляр из центра окружности к хорде.
Пусть ОК - искомый перпендикуляр, тогда по свойству хорды окружности т.К - середина хорды, следовательно АК=18/2=9(см).
Рассмотрим треугольник АОК:
угол ОКА - прямой, ОА=r=15см, АК=9см.
по теореме Пифагора находим ОК=кв.корень(АО^2-AK^2)=12(см)
ответ: 12см