окружности с радиусами 8 см и 12 см касаются точка Найдите расстояние между их центрами в случае внешнего касания И С ЧЕРТЕЖОМ.УСЛОВИЕ ДАНО,НАЙТИ РЕШЕНИЕ
АВС - правильный треугольник со стороной а. АО - радиус описанной окружности. R=АО=а√3/3. ∠АОВ=∠ВОС=АОС=360/3=120°. Так как точка М - середина дуги АВ, то ∠АОМ=∠АОВ/2=60°. Соответственно ∠АОN=60°, а ∠MON=120°. Большая дуга MN равна 360-∠MON=360-120=240°. Вписанный угол MAN опирается на дугу MN и равен её половине. ∠MAN=∩MN/2=240/2=120°. Треугольники AMN и OMN равны, т.к. оба равнобедренные, у них общее основание и углы при вершинах равны, значит углы при основании тоже равны. Соответственно ΔOMN=ΔOBC, значит MN=BC=a. В четырёхугольнике AMON стороны равны, значит он ромб, значит АР=РО. АР=R/2=а√3/6. В правильном треугольнике АЕН АР - высота. Для правильного тр-ка h=a√3/2 (здесь а другая, только для формулы) ⇒ а=2h/√3. ЕН=2·АР/√3=2·а√3/(6√3)=а/3 (здесь а - сторона тр-ка АВС. а=АВ). MN=a, ЕН =а/3. Исходя из симметрии построенного чертежа, ΔAMP=ΔANP, значит МЕ=NН. МЕ=NН=(MN-ЕН)/2=(а-а/3)/2=а/3. МЕ=ЕН=NН=а/3. Доказано.
SB перпендикулярен ( АВС ) AB, ВС принадлежат ( АВС ) Значит, SB перпендикулярен AB и ВС → ∆ ABS , ∆ BCS – прямоугольные
SB перпендикулярен ВС BC перпендикулярен CD, так как в основании пирамиды лежит квадрат Значит, SC перпендикулярен CD по теореме о трёх перпендикулярах → ∆ CDS – прямоугольный
SB перпендикулярен AB AB перпендикулярен AD Значит, SA перпендикулярен АD по теореме о трёх перпендикулярах ∆ ADS – прямоугольный
Из этого следует, что все боковые грани пирамиды являются прямоугольными треугольниками
Рассмотрим ∆ ABS (угол ABS = 90°): cos SAB = AB/ AS AS = AB / cos SAB = 2 / ( 1/2 ) = 4 см
tg SAB = BS / AB BS = AB × tg SAB = 2 × √3 = 2√3 см
∠АОВ=∠ВОС=АОС=360/3=120°.
Так как точка М - середина дуги АВ, то ∠АОМ=∠АОВ/2=60°. Соответственно ∠АОN=60°, а ∠MON=120°.
Большая дуга MN равна 360-∠MON=360-120=240°.
Вписанный угол MAN опирается на дугу MN и равен её половине. ∠MAN=∩MN/2=240/2=120°.
Треугольники AMN и OMN равны, т.к. оба равнобедренные, у них общее основание и углы при вершинах равны, значит углы при основании тоже равны. Соответственно ΔOMN=ΔOBC, значит MN=BC=a.
В четырёхугольнике AMON стороны равны, значит он ромб, значит АР=РО. АР=R/2=а√3/6.
В правильном треугольнике АЕН АР - высота. Для правильного тр-ка h=a√3/2 (здесь а другая, только для формулы) ⇒ а=2h/√3.
ЕН=2·АР/√3=2·а√3/(6√3)=а/3 (здесь а - сторона тр-ка АВС. а=АВ).
MN=a, ЕН =а/3.
Исходя из симметрии построенного чертежа, ΔAMP=ΔANP, значит МЕ=NН.
МЕ=NН=(MN-ЕН)/2=(а-а/3)/2=а/3.
МЕ=ЕН=NН=а/3.
Доказано.
AB, ВС принадлежат ( АВС )
Значит, SB перпендикулярен AB и ВС →
∆ ABS , ∆ BCS – прямоугольные
SB перпендикулярен ВС
BC перпендикулярен CD, так как в основании пирамиды лежит квадрат
Значит, SC перпендикулярен CD по теореме о трёх перпендикулярах →
∆ CDS – прямоугольный
SB перпендикулярен AB
AB перпендикулярен AD
Значит, SA перпендикулярен АD по теореме о трёх перпендикулярах
∆ ADS – прямоугольный
Из этого следует, что все боковые грани пирамиды являются прямоугольными треугольниками
Рассмотрим ∆ ABS (угол ABS = 90°):
cos SAB = AB/ AS
AS = AB / cos SAB = 2 / ( 1/2 ) = 4 см
tg SAB = BS / AB
BS = AB × tg SAB = 2 × √3 = 2√3 см
Рассмотрим ∆ BCS (угол SBC = 90°):
По теореме Пифагора:
SC² = BS² + BC²
SC² = ( 2√3 )² + 2² = 12 + 4 = 16
SC = 4 см
S бок. пов. = S abs + S bcs + S ads + S cds
S бок. пов. = 1/2 × 2 × 2√3 + 1/2 × 2 × 2√3 + 1/2 × 2 × 4 + 1/2 × 2 × 4 = 2√3 + 2√3 + 4 + 4 = 4√3 + 8 см²
ОТВЕТ: S бок. пов. = ( 4√3 + 8 ) см²