В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Bladsail
Bladsail
23.05.2020 11:22 •  Геометрия

Окружности в радиусами 6 и 2 см. касаются внешне. найти расстояние от точки касания до общей касательной к окружностям.

Показать ответ
Ответ:
angelina2003po
angelina2003po
27.05.2020 12:18

Окружности в радиусами 6 и 2 см. касаются внешне. Найти расстояние от точки касания до общей касательной к окружностям.

-------

Обозначим центр меньшей окружности О₁1, большей - О₂2.

Точку касания окружностей - К, точку пересечения перпендикуляра  из К к касательной - М. ( расстояние - перпендикулярный отрезок) 

 Соединим О₁ и О₁ прямой и продолжим ее до пересечения с общей касательной в точке А. 

Соединив центры окружностей с точками касания, получим прямоугольные треугольники ∆ АВО₁ и ∆ АСО₁. Они подобны - имеют общий острый угол при А. На том же основании подобен им и ∆ АКМ. 

КЕ -диаметр меньшей окружности. 

Из подобия треугольников АВО₁ и АСО₂ следует:

АО₂:АО₁=СО₂:ВО₁

АО₂=АЕ+ЕК+КО₂= АЕ+10

(АЕ+10): (АЕ+2)=6:2

2 АЕ+20=6 АЕ+12

4 АЕ=8

АЕ=2

В подобных ∆ АКМ и ∆АО₂М

АО₂:АК=СО₂:КМ

АО₂=12, АК=6

12:6=6:КМ

12 КМ=36

КМ=3


Окружности в радиусами 6 и 2 см. касаются внешне. найти расстояние от точки касания до общей касател
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота