-b - это вектор, противоположный вектору b, поэтому его координаты противоположны координатам вектора b, это будет (-3;2) 1/2с = 1/2(-6; 2) = (-3;1). Использовали правило умножения вектора на число: чтобы умножить вектор на число, надо каждую координату вектора умножить на это число. Теперь выполняем сложение и получаем а = (-3; 2) + (-3; 1) = ( -6; 3)
Если всё это записать кратко, то будет так: а = -(3; -2) + 1/2(-6; 2) = (-3; 2) + (-3; 1) = ( -6; 3)
Длина вектора равна: корень квадратный из суммы квадратов его координат. (-6)^2 + 3^2 = 36 + 9 = 45 IaI (это длина вектора а)= корень из 45 = 3 на корень из 5
Доказывать будем опираясь на признак параллелограмма (если у четырехугольника противолежащие стороны попарно параллельны, то это параллелограмм). Доказательство: 1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них АВ=СД (АВСД- пар-мм) АЕ=СК ( по условию) уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС следовательно ВЕ=ДК 2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них АД=СВ (АВСД- пар-мм) АЕ=СК ( по условию) уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС следовательно ВК=ДЕ 3) ЕВКД - параллелограмм по признаку из пп. 1;2
1/2с = 1/2(-6; 2) = (-3;1). Использовали правило умножения вектора на число: чтобы умножить вектор на число, надо каждую координату вектора умножить на это число.
Теперь выполняем сложение и получаем
а = (-3; 2) + (-3; 1) = ( -6; 3)
Если всё это записать кратко, то будет так:
а = -(3; -2) + 1/2(-6; 2) = (-3; 2) + (-3; 1) = ( -6; 3)
Длина вектора равна: корень квадратный из суммы квадратов его координат.
(-6)^2 + 3^2 = 36 + 9 = 45
IaI (это длина вектора а)= корень из 45 = 3 на корень из 5
Доказательство:
1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них
АВ=СД (АВСД- пар-мм)
АЕ=СК ( по условию)
уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС
следовательно ВЕ=ДК
2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них
АД=СВ (АВСД- пар-мм)
АЕ=СК ( по условию)
уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС
следовательно ВК=ДЕ
3) ЕВКД - параллелограмм по признаку из пп. 1;2