Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точек
B(1;0;0)
C1(1;1;1)
D(0;1;0)
A1(0;0;1)
D1(0;1;1)
B1(1;0;1)
Вектора
АD1(0;1;1) длина √2
A1B(1:0;-1) длина √2
DD1(0;0;1)
Косинус Угла между AD1 и A1B
1/√2/√2=1/2 угол 60 градусов.
Уравнение плоскости А1ВС1
ах+by+cz+d=0
Подставляем координаты точек
c+d=0
a+d=0
a+b+c+d=0
Пусть d= -1 тогда с=1 а=1 b= -1
x-y+z-1=0
Синус угла между DD1 и А1ВС1
1/√3=√3/3 угол arcsin(√3/3)
Уравнение плоскости АВС
z=0
Плоскость АВ1D1
ax+by+cz=0
Подставляем координаты точек
а+с=0
b+c=0
Пусть с= -1 тогда а=1 b=1
x+y-z=0
Косинус угла между искомыми плоскостями
1/√3=√3/3 угол arccos(√3/3)
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.