Опишите ресурсы и возможности экономики нашей страны используя словосочетания: Необходимость модернизации,экономические ресурсы,сельское хозяйство,города,инвестиции,инновации
1) Объём конуса равен произведению одной-третьей площади основания на высоту:
V = (πR²·H) /3,
где πR² - площадь основания конуса (окружности радиуса R);
Н - высота конуса.
2) Построим равнобедренный треугольник - осевое сечение исходного конуса. Высота (Н) этого треугольника делит его основание на 2 равных отрезка, каждый из которых длиной R. Объём такого конуса, согласно условию задачи:
V₁ = (πR²·H) /3 = 27 см³
3) Разделим высоту построенного треугольника на 3 равные части. Отступив 2 деления от вершины, параллельно основанию конуса проведём сечение, которое является основанием меньшего конуса, с той же вершиной.
Получим ещё один треугольник, который подобен исходному. Коэффициент подобия равен: К = 2 : 3, где 2 - высота меньшего конуса, 3 - высота большего конуса.
4) Соответственно, если R - радиус основания большего конуса, то
Центр вписанной окружности треугольника = точка пересечения его биссектрис. В правильном треугольнике биссектрисы, высоты и медианы совпадают. По свойству медианы треугольника, точкой пересечения они делятся в соотношении 2:1 Поэтому радиус вписанной окружности правильного треугольника равен 1/3 длины высоты. r = h/3 Отсюда h = 3r = 3×2√3 = 6√3 Высота правильного треугольника образует с его сторонами прямоугольный треугольник. Угол, противолежаший высоте, равен 60°, сторона правильного треугольника является гипотенузой Отсюда длина стороны треугольника: a = h / sin 60° = 6√3 / (√3/2) = 12
8 см³
Объяснение:
1) Объём конуса равен произведению одной-третьей площади основания на высоту:
V = (πR²·H) /3,
где πR² - площадь основания конуса (окружности радиуса R);
Н - высота конуса.
2) Построим равнобедренный треугольник - осевое сечение исходного конуса. Высота (Н) этого треугольника делит его основание на 2 равных отрезка, каждый из которых длиной R. Объём такого конуса, согласно условию задачи:
V₁ = (πR²·H) /3 = 27 см³
3) Разделим высоту построенного треугольника на 3 равные части. Отступив 2 деления от вершины, параллельно основанию конуса проведём сечение, которое является основанием меньшего конуса, с той же вершиной.
Получим ещё один треугольник, который подобен исходному. Коэффициент подобия равен: К = 2 : 3, где 2 - высота меньшего конуса, 3 - высота большего конуса.
4) Соответственно, если R - радиус основания большего конуса, то
R·(2/3) - радиус основания меньшего конуса.
5) Находим объём меньшего конуса:
V₂ = (π·(R·2/3)²· (H·2/3)/3 = (πR²H)/3 · (2/3)³ = V₁·(2/3)³ = 27· (8/27)= 8 см³.
ответ: 8 см³.
Поэтому радиус вписанной окружности правильного треугольника равен 1/3 длины высоты. r = h/3
Отсюда h = 3r = 3×2√3 = 6√3
Высота правильного треугольника образует с его сторонами прямоугольный треугольник. Угол, противолежаший высоте, равен 60°, сторона правильного треугольника является гипотенузой
Отсюда длина стороны треугольника:
a = h / sin 60° = 6√3 / (√3/2) = 12