Определи длину большей боковой стороны прямоугольной трапеции, если один из углов трапеции равен 60°, меньшее основание — 3,2 см, большее основание — 11,2 см.
Чертеж, я думаю, сумеешь сам нарисовать. Ромб с вершинами А, В, С, D Черти диагонали. Они пересекаются под прямым углом и в точке пересечения делятся пополам (как ромбу и полагается) . Диагонали АС и BD. Точка пересечения диагоналей О. Дано: АВ=50 см, т. к все стороны ромба равны, т. е. 200/4=50 Получились 4 прямоугольных треугольника, равных друг другу. S ромба = 4*S abo S abo=1/2AO*BO (площадь прямоугольного треугольника равна половине произведения катетов) Диагонами ромба относятся друг к другу как 3:4 Катеты треугольника АВО обозначаем как 3х и 4х (т. к. половины диагоналей тоже соотносятся друг с другом как 3:4) Т. О. получается прямоугольный треугольник с катетами 3х и 4х, и с гипотенузой 50 см. Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза = 50 см. Получаем: АВ=1/2АО*ВО 2500=(3х) 2+(4х) 2 2-это в квадрате 2500=9х2+16х2 2500=25х2 х2=100 х=10 S abo=1/2AO*BO AO=3x=30 см BO=4x=40 см S abo=1/2*30*40=600 S abcd=4*600=2400 ответ: площадь ромба = 2400 см2 Надеюсь, разберешься. Главное обозначь на чертеже вершины правильно. Кошмааар...
Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .