А) Координаты середины отрезка с концами в точках (x₁;y₁) и (x₂;y₂) находятся по формуле x₀ = (x₁+x₂)/2; y₀ = (y₁+y₂)/2; тогда (x₀;y₀) - середина.
Пусть искомая точка (x;y), тогда точка (-1;3) должна быть серединой отрезка с концами в точках (2;9) и (x;y).
Поэтому -1 = (2+x)/2; 3 = (9+y)/2. Решаем эти два уравнения -2 = 2+x; 6 = 9+y; x = -2-2 = -4; y = 6-9 = -3. Искомая точка (x;y) = (-4;-3) б) Пусть искомая точка (x;y) Аналогично, начало координат (0;0) должно быть серединой отрезка с концами в точках (a;b) и (x;y). Тогда 0 = (a+x)/2; 0 = (b+y)/2; отсюда находим 0 = a+x; 0 = b+y; x = -a; y = -b; Искомая точка (x;y)=(-a;-b).
A)Допустим, это не так. Тогда точки A₁0₁B₁0₂ лежат в одной плоскости. Тогда в ней же лежат прямые, проходящие через O₁;O₂ параллельные A₁B₁ или, что то же самое, параллельные CD В частности, там лежат середины ребер AD и DD₁ ни вместе с A₁ задают плоскость грани куба AA₁D₁D, в которой не лежит B₁. Противоречие.
б)Введем координаты с началом в точке A и с осями x,y,z, направленными вдоль прямых AD,AB,AA₁ соответственно. Тогда координаты точек будут такими: A₁(0,0,2),B₁(0,2,2),O₁(1,1,0),O₂(2,1,1). Если отложить вектор A₁B₁ от точки B₁, то его конец T будет иметь координаты (1,3,0). Написав уравнение плоскости, проходящей через B₁,O₂,T, получим x+y+z-4=0. Тогда расстояние от точки (0;0;2) до этой плоскости составит
Координаты середины отрезка с концами в точках (x₁;y₁) и (x₂;y₂) находятся по формуле
x₀ = (x₁+x₂)/2;
y₀ = (y₁+y₂)/2;
тогда (x₀;y₀) - середина.
Пусть искомая точка (x;y), тогда точка (-1;3) должна быть серединой отрезка с концами в точках (2;9) и (x;y).
Поэтому
-1 = (2+x)/2;
3 = (9+y)/2.
Решаем эти два уравнения
-2 = 2+x;
6 = 9+y;
x = -2-2 = -4;
y = 6-9 = -3.
Искомая точка (x;y) = (-4;-3)
б) Пусть искомая точка (x;y)
Аналогично, начало координат (0;0) должно быть серединой отрезка
с концами в точках (a;b) и (x;y). Тогда
0 = (a+x)/2;
0 = (b+y)/2;
отсюда находим
0 = a+x;
0 = b+y;
x = -a;
y = -b;
Искомая точка (x;y)=(-a;-b).
A)Допустим, это не так. Тогда точки A₁0₁B₁0₂ лежат в одной плоскости. Тогда в ней же лежат прямые, проходящие через O₁;O₂ параллельные A₁B₁ или, что то же самое, параллельные CD В частности, там лежат середины ребер AD и DD₁ ни вместе с A₁ задают плоскость грани куба AA₁D₁D, в которой не лежит B₁. Противоречие.
б)Введем координаты с началом в точке A и с осями x,y,z, направленными вдоль прямых AD,AB,AA₁ соответственно. Тогда координаты точек будут такими: A₁(0,0,2),B₁(0,2,2),O₁(1,1,0),O₂(2,1,1). Если отложить вектор A₁B₁ от точки B₁, то его конец T будет иметь координаты (1,3,0). Написав уравнение плоскости, проходящей через B₁,O₂,T, получим x+y+z-4=0. Тогда расстояние от точки (0;0;2) до этой плоскости составит
Объяснение: