Определи площадь треугольника KPC, если KC = 16 см, ∡K=45°, ∡P=65°. SKPC= см2(все приблизительные числа в расчётах округли до десятитысячных, ответ округли до сотых).
Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
ответ:Задание 1
Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
Объяснение:
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас