Определить боковую сторону равнобедренного треугольника, если синус угла (острого) при вершина равен 0,96, а радиус описанной около него окружности равен 12,5 см.
Сумма противоположенных углов вписанного в окружность четырехугольника равна 180 градусов, значит сумма углов B и D = 180. Найдем сначала угол B по теореме косинусов.
угол B = arccos((AB^2+BC^2-AC^2) / (2*AB*BC)) = arccos (225+400-625) / 600) = arccos 0 = 90 градусов(^2 - это в степени 2, т.е. в квадрате), следовательно угол D равен 180 - 90 = 90. Приходим к выводу, что треугольник ACD - прямоугольный треугольник и дальше по теореме пифагора CD=корень из (АС^2-AD^2)=корень из (625-49) = +-24 . ответ: CD = 24.
Объяснение:
1. В трапеции углы прилежащие к боковой стороне равны 180°.
∠В=180°-70°=110°;
∠С=180°-50°=130°.
***
2. В равнобокой трапеции углы при основаниях равны:
∠F=∠M=100°;
∠E=∠N=180°-100°=80°.
***
3) ∠P=180°-75°=105°;
∠S=180°-100°=80°.
***
4) ∠M= 180°-65°=115°;
∠F=∠E=90°.
***
5) ∠KLN=∠LNM=30*, как накрест лежащие при KL║MN и секущей NL.
∠N=30°+30°=60°;
∠L=∠K=180°-60°=120°;
∠M=180°-120°=60°.
***
6) ???
***
7) ∠C=180°-60°=120°;
∠ВАС=∠ВСА=120°-90°=30°;
∠A=30°+30°=60°;
∠B=180°-60°=120°.
***
8) ∠K=∠RMK=(180°-50°)/2=65°;
∠R=180°-65°=115°;
∠SRM=115°-50°=65°;
∠SMR=180-(90°+65°)=25°;
∠M=25°+65°=90°.
***
9) ∠PTL=180°-(90°+55°)=180°-145°=35°;
∠LTO=∠O=90°-35°=55°;
∠L=180°-55°=125°.
∠P=∠T=90°.
***
10) ???
Сумма противоположенных углов вписанного в окружность четырехугольника равна 180 градусов, значит сумма углов B и D = 180. Найдем сначала угол B по теореме косинусов.
угол B = arccos((AB^2+BC^2-AC^2) / (2*AB*BC)) = arccos (225+400-625) / 600) = arccos 0 = 90 градусов(^2 - это в степени 2, т.е. в квадрате), следовательно угол D равен 180 - 90 = 90. Приходим к выводу, что треугольник ACD - прямоугольный треугольник и дальше по теореме пифагора CD=корень из (АС^2-AD^2)=корень из (625-49) = +-24 . ответ: CD = 24.