Раз медиана треугольника короче стороны АВ в 2 раза, значит МС=АМ=МВ. Найдем модуль вектора АМ. Для этого определим его координаты. Они равны разности координат КОНЦА и НАЧАЛА вектора. То есть АМ{9;2}. Модуль вектора равен корню квадратному из суммы квадратов его координат, то есть |AM| = √(81+4) = √85. Мы знаем, что модули векторов АМ и МС равны. Значит модуль вектора МС{(p-3);6+1)} (его координаты определяем также по разности координат КОНЦА и НАЧАЛА) равен √85. То есть (р-3)²+49=85. Решаем это квадратное уравнение и получаем, что р1=3+√36=9 и р2=-3. ответ: C(9;6) и С(-3;6). Смотри рисунок.
Расстояние между параллельными прямыми равно диаметру окружности, которая их обеих касается. Поэтому расстояние от основания до средней линии равно 2, а высота треугольника, соответственно, равна H = 4.
Если из центра вписаной окружности опустить перпендикуляр на боковую сторону, то получится прямоугольный треугольник с катетом r = 1 и гипотенузой H - r = 4 - 1 = 3 (ясно, что центр лежит на высоте к основанию на расстоянии r = 1 от основания). Таким образом, если обозначить Ф угол при основании треугольника, то
cos(Ф) = 1/3. (угол между боковой стороной и высотой к основанию равен 90 - Ф)
Легко найти sin(Ф) = корень(1 - 1/9) = 2*корень(2)/3,
сtg(Ф) = 1/(2*корень(2)) = корень(2)/4;
Половина основания равна b/2 = H*ctg(Ф) = корень(2);
Найдем модуль вектора АМ. Для этого определим его координаты. Они равны разности координат КОНЦА и НАЧАЛА вектора. То есть АМ{9;2}. Модуль вектора равен корню квадратному из суммы квадратов его координат, то есть |AM| = √(81+4) = √85. Мы знаем, что модули векторов АМ и МС равны. Значит модуль вектора МС{(p-3);6+1)} (его координаты определяем также по разности координат КОНЦА и НАЧАЛА) равен √85. То есть (р-3)²+49=85. Решаем это квадратное уравнение и получаем, что р1=3+√36=9 и р2=-3.
ответ: C(9;6) и С(-3;6).
Смотри рисунок.
Расстояние между параллельными прямыми равно диаметру окружности, которая их обеих касается. Поэтому расстояние от основания до средней линии равно 2, а высота треугольника, соответственно, равна H = 4.
Если из центра вписаной окружности опустить перпендикуляр на боковую сторону, то получится прямоугольный треугольник с катетом r = 1 и гипотенузой H - r = 4 - 1 = 3 (ясно, что центр лежит на высоте к основанию на расстоянии r = 1 от основания). Таким образом, если обозначить Ф угол при основании треугольника, то
cos(Ф) = 1/3. (угол между боковой стороной и высотой к основанию равен 90 - Ф)
Легко найти sin(Ф) = корень(1 - 1/9) = 2*корень(2)/3,
сtg(Ф) = 1/(2*корень(2)) = корень(2)/4;
Половина основания равна b/2 = H*ctg(Ф) = корень(2);
Площадь треугольника H*b/2 = 4*корень(2);