В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Anuliks
Anuliks
09.03.2022 11:09 •  Геометрия

Определить каждый 1-12. три равенства треугольников(сказать почему вы так решили) скажите

Показать ответ
Ответ:
KIMSEOLHYUN
KIMSEOLHYUN
15.10.2022 02:43
1) Сумма углов выпуклого четырехугольника равна 360, значит четвертый угол равен 360-300=60 градусов

2) Медиана, проведенная к основанию равнобедренного треугольника, является и высотой, и биссектрисой, значит МС=АС/2=28, и тогда по Теореме Пифагора получим, что BM^2=BC^2-MC^2=53^2-28^2=2809-784=2025=45^2. ВМ=45.

3) Так как длина дуги по формуле ищется как l= \frac{\pi *R}{180} * \alpha, то отношение длин задает отношение центральных углов, которыми данные дуги определены, то есть один центральный угол будет равен 9х, а другой 11х. В сумме они дают 360 градусов, значит: 9х+11х=360, тогда 20х=360, х=18. Центральный угол, опирающийся на меньшую из дуг равен 9х=9*18=162 градуса.
0,0(0 оценок)
Ответ:
ykim1337
ykim1337
20.04.2020 00:46

№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.

Пирамида QABCD, QO -  высота,  АQC- диагональное сечение, АВ=а.

V=S•h:3

S=a²

h=AC√3/2  

AC=a:sin45°=a√2

h=a√6/2

V=a³√6/6

№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.  

      Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.  

По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).

ОН - половина АD, ⇒АD=2OH=18 (см)

Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.  

S=15•18•4:2=540 см².

————————

№3. Условие неполное.  

Объем  V  правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)

Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.  

———————

№4.

Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.  

S(бок)=3•MH•AB:2=3•8/3•8:2=32

————————

№5  

Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.  

————————

№6.

Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.  

———————

Решения задач 4,5,6  даны в приложениях.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота