Чертим параллелограмм с острым углом слева внизу, а с большими сторонами горизонтально. Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X. Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда: AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. Пусть АЕ=Y. Периметр треугольника AB+BE+AE=4X+4X+Y Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X Разность периметров (Y+18X)-(Y+8X)=10X. 10X=10, X=1. Периметр параллелограмма 2*(4X+9X)=26X=26. Вроде так.
Плоскость параллеограмма АВСD пересекается с плоскостью альфа по прямой, соединяющей середины сторон АВ и СD. По условию ВК=МС; ВК|| МС. Если две стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм. ⇒КМ || ВС Через две параллельный прямые можно провести плоскость, притом только одну. Так как ВС не лежит в плоскости альфа, то АD, как сторона параллелограмма, равная и параллельная ВС и лежащая в плоскости АВСD, тоже не лежит в плоскости альфа, в противном случае через ВС и АD можно было бы провести плоскость, отличную от плоскости АВСD. ВС || КМ ⇒ КМ || АD. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то она параллельна этой плоскости. AD параллельна КМ ⇒ параллельна плоскости α, что и требовалось доказать.
Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X.
Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда:
AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X.
Пусть АЕ=Y.
Периметр треугольника AB+BE+AE=4X+4X+Y
Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X
Разность периметров (Y+18X)-(Y+8X)=10X.
10X=10, X=1.
Периметр параллелограмма 2*(4X+9X)=26X=26.
Вроде так.
По условию ВК=МС; ВК|| МС.
Если две стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм.
⇒КМ || ВС
Через две параллельный прямые можно провести плоскость, притом только одну.
Так как ВС не лежит в плоскости альфа, то АD, как сторона параллелограмма, равная и параллельная ВС и лежащая в плоскости АВСD, тоже не лежит в плоскости альфа, в противном случае через ВС и АD можно было бы провести плоскость, отличную от плоскости АВСD.
ВС || КМ ⇒ КМ || АD.
Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то она параллельна этой плоскости.
AD параллельна КМ ⇒ параллельна плоскости α, что и требовалось доказать.